Skip to main content
Log in

Study of gradual and sudden operating condition variations to optimize energy and mass consumption of an industrial fluidized catalytic cracking (FCC) unit with a high-efficiency regenerator

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A dynamic model was developed to investigate the impact of operating conditions on the main output variables of the fluidized catalytic cracking (FCC) process with a high-efficiency regenerator and to determine the optimal amounts of operating variables, at the Abadan refinery FCC unit in Iran. To determine the rate constants in the developed kinetic model and other related constants in the developed model, a wide range of industrial data were gathered from the targeted process over several months. Through applying an adjusted dynamic model, the effect of gradual increases in feed preheat temperature (350–500 K) on the yield of gasoline and LCO was investigated, and increases in both yields were observed. The effects of sudden changes in feed preheat temperature, feed and regenerated catalyst flow rate on gasoline yield were also examined. The results showed that a sudden 6.9% increase in feed, a sudden 30K decrease in temperature and a sudden 1.12% decrease in catalyst flow rate resulted in 2%, 0.27% and 0.5% decreases in gasoline, respectively. Furthermore, potential methods for neutralizing these negative effects on the gasoline yield were investigated. Finally, the operating conditions were optimized to improve the gasoline and octane number. Three different optimization cases were studied. The profitability of the unit increased about $2.5–3.8 million per year. A reduction in energy consumption of 12,500 to 21,000 Gj/yr was achieved. The amount of feed and the catalyst flow rate were also decreased by 1.5% and 0.2%–0.9%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

cross-sectional area [m]

Aij :

pre-exponential factor of the reaction lump i→lump j [m3/(s kg) or s−1]

Ci :

molar concentration of lump i [mol/m3]

Ĉi :

mass concentration of lump i [kg/m3]

CP :

specific heat capacity [j/kg K]

D:

diameter [m]

Eij :

activation energy of the reaction lump i lump j [J/mol]

EC :

energy parameter of the carbon combustion reaction [J/mol]

E saj :

activation energy of the gas-solid reaction [J/mol]

E gaj :

activation energy of the gas reaction [J/mol]

F:

mass flow rate [kg/s]

FG:

flue gas

Gc :

solid mass flux [kg/m2 s]

GLN:

gasoline

g:

gravity acceleration [m/s2]

H:

enthalpy [m/s2]

kC :

rate coefficient of the carbon combustion reaction

k gj :

kinetic rate constant of the gas reaction j [mol s−1 m−3]

k sj :

kinetic rate constant of the gas-solid reaction j [mol s−1 kg−1 cat]

L:

height [m]

LCO:

light cycle oil

LPG:

liquefied petroleum gas

Mw:

molecular weight [kg/mol]

MRE:

mean relative error

N:

molar flow rate [mol/s]

nij :

order of the reaction lump i→lump j

P:

pressure [Pa]

Qloss :

heat loss [J/s]

Q 0r :

Global reaction heat at standard conditions [J/s]

R:

Universal gas constant [J/mol K]

rC :

intrinsic carbon combustion rate [mol (kg catalyst)−1 s−1]

rij :

rate of reaction lump i→ lump j [kg/m3 s]

ri :

rate of formation of i [kg/m3 s]

r gj :

rate of gas reaction j [mol/m3 s]

r sj :

rate of gas-solid reaction j [mol/kg s]

RMSE:

root mean square error

Sp. Gr.:

specific gravity

T:

temperature [K]

t:

time [s]

u:

superficial velocity [m/s]

U:

overall heat transfer coefficient [J/m2 s K]

V:

volume [m3]

W:

inventory [kg]

xi :

mass fraction of i

Y catck :

catalytic coke content of catalyst [kg coke/kg catalyst]

yi :

molar fraction of i

Yi :

component i (in coke) content of catalyst

z:

axial coordinate[m]

∆H:

heat of reaction [J/kg]

∆Hcrk :

heat of cracking per unit mass of VGO [J/kg]

α c :

deactivation constant [kg catalyst/kg catalytic coke]

σ :

intrinsic CO2/CO molar ratio in coke [dimensionless]

ε :

volume fraction [dimensionless]

φ :

catalyst deactivation function [dimensionless]

ρ :

density [kg/m3]

\(\vartheta _{ji}^s\) :

stoichiometric coefficient of lump i in gas-solid reaction j [dimensionless]

\(\vartheta _{ji}^g\) :

stoichiometric coefficient of lump i in gas reaction j [dimensionless]

a:

air

c:

catalyst

ck:

coke

FB:

freeboard section

g:

gas

LF:

lift section

m:

mean

ov:

feed vapor

rc:

recirculated catalyst

RG:

regenerator section

rs:

riser

surr:

surrounding

tf:

total feed

VGO:

vacuum gas oil

1:

refers to the lift and the combustor section

2:

refers to the dense bed and freeboard

References

  1. R. Sadeghbeigi, Fluid catalytic cracking handbook, Elsevier (1995).

  2. V. W. Weekman Jr. and D. M. Nace, AIChE J., 16, 397 (1970).

    Article  CAS  Google Scholar 

  3. L. S. Lee, Y. W. Chen, T. N. Huang and W. Y. Pan, Can. J. Chem. Eng., 67, 615 (1989).

    Article  CAS  Google Scholar 

  4. J. Ancheyta-Juárez F. López-Isunza, E. Aguilar-Rodríguez and J. C. Moreno-Mayorga, Ind. Eng. Chem. Res., 36, 5170 (1997).

    Article  Google Scholar 

  5. M. Fabulic Ruszkowski, Z. Gomzi and T. Tomic, Chem. Biochem. Eng. Q., 20, 61 (2006).

    Google Scholar 

  6. G. Bollas, A. Lappas, D. Iatridis and I. Vasalos, Catal. Today, 127, 31 (2007).

    Article  CAS  Google Scholar 

  7. J. Ancheyta-Juárez and J. A. Murillo-Hernández, Energy Fuels, 14, 373 (2000).

    Article  CAS  Google Scholar 

  8. L. Yen, R. Wrench and A. Ong, Oil Gas J.; (United States), 86 (1988).

  9. J. Ancheyta-Juarez and R. Sotelo-Boyas, Energy Fuels, 14, 1226 (2000).

    Article  CAS  Google Scholar 

  10. K. Sertić-Bionda, Z. Gomzi and M. Mužic, Chem. Eng. Commun., 197, 275 (2009).

    Article  CAS  Google Scholar 

  11. A. Blasetti and H. de Lasa, Ind. Eng. Chem. Res., 36, 3223 (1997).

    Article  CAS  Google Scholar 

  12. H. Farag, A. Blasetti and H. de Lasa, Ind. Eng. Chem. Res., 33, 3131 (1994).

    Article  CAS  Google Scholar 

  13. I. Pitault, M. Forissier and J. R. Bernard, Can. J. Chem. Eng., 73, 498 (1995).

    Article  CAS  Google Scholar 

  14. S. Sadighi, A. Ahmad and M. Rashidzadeh, Korean J. Chem. Eng., 27, 1099 (2010).

    Article  CAS  Google Scholar 

  15. Y. M. John, M. A. Mustafa, R. Patel and I. M. Mujtaba, Fuel, 235, 1436 (2019).

    Article  CAS  Google Scholar 

  16. A. G. Sani, H. A. Ebrahim and M. Azarhoosh, Fuel, 225, 322 (2018).

    Article  CAS  Google Scholar 

  17. H. Ali and S. Rohani, Chem. Eng. Technol.: Ind. Chem.-Plant Equipment-Process Eng.-Biotechnol., 20, 118 (1997).

    Article  CAS  Google Scholar 

  18. A. Arbel, Z. Huang, I. H. Rinard, R. Shinnar and A. V. Sapre, Ind. Eng. Chem. Res., 34, 1228 (1995).

    Article  CAS  Google Scholar 

  19. S. M. Jacob, B. Gross, S. E. Voltz and V. W. Weekman Jr., AIChE J., 22, 701 (1976).

    Article  CAS  Google Scholar 

  20. A. Secchi, M. Santos, G. Neumann and J. Trierweiler, Comput. Chem. Eng., 25, 851 (2001).

    Article  CAS  Google Scholar 

  21. S. Kim, J. Urm, D. S. Kim, K. Lee and J. M. Lee, Korean J. Chem. Eng., 35, 2327 (2018).

    Article  CAS  Google Scholar 

  22. I.-S. Han and C.-B. Chung, Chem. Eng. Sci., 56, 1951 (2001).

    Article  CAS  Google Scholar 

  23. Y. M. John, R. Patel and I. M. Mujtaba, Comput. Chem. Eng., 106, 730 (2017).

    Article  CAS  Google Scholar 

  24. T. Takatsuka, S. Sato, Y. Morimoto and H. Hashimoto, Int. Chem. Eng., 27, 107 (1987).

    Google Scholar 

  25. J. Fernandes, J. J. Verstraete, C. C. Pinheiro, N. Oliveira and F. R. Ribeiro, Comput. Aided Chem. Eng., 20, 589 (2005).

    Article  Google Scholar 

  26. J. L. Fernandes, C. I. Pinheiro, N. Oliveira and F. R. Ribeiro, Comput. Aided Chem. Eng., 21, 1575 (2006).

    Article  Google Scholar 

  27. J. L. Fernandes, C. I. Pinheiro, N. M. Oliveira, A. I. Neto and F. R. Ribeiro, Chem. Eng. Sci., 62, 6308 (2007).

    Article  CAS  Google Scholar 

  28. J. L. Fernandes, L. H. Domingues, C. I. Pinheiro, N. M. Oliveira and F. R. Ribeiro, Fuel, 97, 97 (2012).

    Article  CAS  Google Scholar 

  29. I.-S. Han, J. B. Riggs and C.-B. Chung, Chem. Eng. Process.: Process Intensification, 43, 1063 (2004).

    Article  CAS  Google Scholar 

  30. J. R. Hernández-Barajas, R. Vázquez-Román and D. Salazar-Sotelo, Fuel, 85, 849 (2006).

    Article  CAS  Google Scholar 

  31. R. B. Kasat, D. Kunzru, D. Saraf and S. K. Gupta, Ind. Eng. Chem. Res., 41, 4765 (2002).

    Article  CAS  Google Scholar 

  32. J. Souza, J. Vargas, O. Von Meien, W. Martignoni and J. Ordonez, J. Chem. Technol. Biotechnol.: Int. Res. Process, Environ. Clean Technol., 84, 343 (2009).

    Article  CAS  Google Scholar 

  33. E. Almeida Nt and A. Secchi, Brazilian J. Chem. Eng., 28, 117 (2011).

    Article  Google Scholar 

  34. A. T. Jarullah, N. A. Awad and I. M. Mujtaba, Fuel, 206, 657 (2017).

    Article  CAS  Google Scholar 

  35. C. Chen, N. Lu, L. Wang and Y. Xing, Comput. Chem. Eng., 150, 107336 (2021).

    Article  CAS  Google Scholar 

  36. J. Biswas and I. Maxwell, Studies Surf. Sci. Catal., 49, 1263 (1989).

    Article  Google Scholar 

  37. J. Biswas and I. Maxwell, Appl. Catal., 58, 1 (1990).

    Article  CAS  Google Scholar 

  38. J. Biswas and I. Maxwell, Appl. Catal., 58, 19 (1990).

    Article  CAS  Google Scholar 

  39. T. Myrstad, Appl. Catal. A: Gen., 155, 87 (1997).

    Article  CAS  Google Scholar 

  40. H. Gonzalez, J. Ramirez, A. Gutierrez-Alejandre, P. Castillo, T. Cortez and R. Zarate, Catal. Today, 98, 181 (2004).

    Article  CAS  Google Scholar 

  41. K.-H. Lee, Y.-W. Lee, J.-D. Kim, K.-S. Jeon and B.-H. Ha, Korean J. Chem. Eng., 14, 445 (1997).

    Article  CAS  Google Scholar 

  42. M. Davoodpour, R. Tafreshi, A. A. Khodadadi and Y. Mortazavi, Korean J. Chem. Eng., 34, 681 (2017).

    Article  CAS  Google Scholar 

  43. J. S. Magee and M. M. Mitchell, Fluid catalytic cracking: Science and technology, Elsevier (1993).

  44. J. L. Fernandes, J. J. Verstraete, C. I. Pinheiro, N. M. Oliveira and F. R. Ribeiro, Chem. Eng. Sci., 62, 1184 (2007).

    Article  CAS  Google Scholar 

  45. C. Daly, N. Tidjani, G. Martin and J. Roesler, Détermination des paramétres cinétiques dans la régénération des catalyseurs de FCC, Technical Report No. 56010, Institut Français du Pétrole (2001).

  46. M. Zwinkels and L. Nougier, FCC regenerator simulation model, Technical Report No. 44143, Institut Français du Pétrole (1997).

  47. G. Wang, S. Lin, W. Mo, C. Peng and G. Yang, Ind. Eng. Chem. Process Des. Dev., 25(3), 626 (1986).

    Article  CAS  Google Scholar 

  48. B. Alsadik, Adjustment models in 3D geomatics and computational geophysics: With MATLAB examples, Elsevier (2019).

  49. D. Pugliese, F. Bella, V. Cauda, A. Lamberti, A. Sacco, E. Tresso and S. Bianco, ACS Appl. Mater. Interfaces, 5, 11288 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The financial support provided by the Research and Development of Abadan refinery complex is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neda Gilani or Sorood Zahedi Abghari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubi, K., Gilani, N., Abghari, S.Z. et al. Study of gradual and sudden operating condition variations to optimize energy and mass consumption of an industrial fluidized catalytic cracking (FCC) unit with a high-efficiency regenerator. Korean J. Chem. Eng. 39, 1673–1687 (2022). https://doi.org/10.1007/s11814-022-1151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1151-y

Keywords

Navigation