Skip to main content
Log in

Efficient waveguide-type four-color (red–green–blue–infrared) laser beam combiner for compact laser beam scanning image projectors

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A waveguide-based combiner that can combine an infrared laser beam with primary color (red, green, and blue) laser beams is proposed and analyzed using a simulation based on the beam propagation method. The combiner comprises four single-mode waveguides for individual light inputs and four directional couplers to change the light transmission path. Introducing the characteristic symmetrical arrangement of these waveguides and couplers results in an excellent performance for the four-color (red–green–blue–infrared) waveguide-based combiner. The symmetrical arrangement essentially reduces the combiner size without degrading the combining efficiency even though an additional combining color is added. The total length of the combiner is only 2.5 mm, in spite of the fact that the simulated combining efficiency averaged over the red, green, blue, and infrared colors is as high as 94%. In addition, a combining efficiency of more than 80% is obtained over a wide wavelength region of 35 nm. The effect of the polarization difference on the combining efficiency is negligible, i.e., almost within ± 1%. The analysis of the combining efficiency dependence on the gap width of the directional coupler composing the combiner indicates a large fabrication tolerance for process condition fluctuations. The proposed four-color (red–green–blue–infrared) combiner is expected to expand the functionality of compact laser beam scanner-based displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brennesholtz, M.S., Stupp, E.H.: Projection Displays, 2nd edn. Wiley, New Jersey (2008)

    Google Scholar 

  2. Kress, B.C.: Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets. SPIE Press, Bellingham (2020)

    Book  Google Scholar 

  3. Microsoft Mesh powers shared experiences in mixed reality: https://news.microsoft.com/innovation-stories/microsoft-mesh/ (2021). Accessed 1 Oct 2011

  4. Kress, B., Starner T.: A review of head-mounted displays (HMD) technologies and applications for consumer electronics. In: Proceedings volume 8720, photonic applications for aerospace, commercial, and harsh environments IV; 87200A (2013). https://doi.org/10.1117/12.2015654

  5. Prabhakar, G., Ramakrishnan, A., Madan, M., et al.: Interactive gaze and finger controlled HUD for cars. J. Multimodal User Interfaces. 14, 101–121 (2020). https://doi.org/10.1007/s12193-019-00316-9

    Article  Google Scholar 

  6. Mukawa, H.: SONY: Immersive XR workflow and technologies. In: Proc. SPIE 11764, SPIE AVR21 Industry Talks II, 117640U (2021). https://doi.org/10.1117/12.2597471

  7. Saulsbury, A.: Microsoft: Mixed reality, the future of computing and human Interactions. In: Proc. SPIE 11764, SPIE AVR21 Industry Talks II, 117641D (2021). https://doi.org/10.1117/12.2598234

  8. Yin, K., He, Z., Xiong, J., Zou, J., Li, K., Wu, S.: Virtual reality and augmented reality displays: advances and future perspectives. J. Phys. Photonics 3, 022010 (2021). https://doi.org/10.1088/2515-7647/abf02e/pdf

    Article  ADS  Google Scholar 

  9. Rao, L., He, S., Wu, S.-T.: Blue-phase liquid crystals for reflective projection displays. J. Display Technol. 8, 555–558 (2012)

    Article  ADS  Google Scholar 

  10. Huang, F.-C., Chen, K., Wetzstein, G.: The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans. Graph. 34(4), 1–12 (2015)

    Google Scholar 

  11. LCOS microdisplays, drive ASICs and services offered by HOLOEYE: https://holoeye.com/lcos-microdisplays/ (2021). Accessed 1 Oct 2011

  12. Jang, H.J., Lee, J.Y., Kim, J., Kwak, J., Park, J.-H.: Progress of display performances: AR, VR, QLED, and OLED. J. Inf. Disp. 21(1), 1–9 (2020)

    Article  Google Scholar 

  13. MicroLED display: https://www.compoundphotonics.com/ (2021). Accessed 1 Oct 2011

  14. DenBaars, S., Wong, M., Smith, J., Ley, R., Li, H., Li, P., Pasayat, S., Hwang, D., Khoury, M., Mishra, U., Speck, J., Nakamura, S.: High efficient GaN based micro LEDs for high re-solution micro LED displays. In: Proceedings of the International Display Workshops, KeynoteAddress-3, vol. 27 (2020). https://doi.org/10.36463/idw.2020.0009

  15. Weigand, P.: TriLite Technologies: ultra-compact displays to enable the AR glasses mass market. In: Proc. SPIE 11764, SPIE AVR21 Industry Talks II, 1176401 (2021). https://doi.org/10.1117/12.2597429

  16. Hofmann, U.: Oqmented: MEMS based laser beam scanning: the key to meeting compactness and performance requirements of AR-smartglasses. In: Proc. SPIE 11764, SPIE AVR21 Industry Talks II, 117641N (2021). https://doi.org/10.1117/12.2598225

  17. Kamei, J.: SEIREN KST: compact full color optical engine for smart glasses. In: Proc. SPIE 11764, SPIE AVR21 Industry Talks II, 117641E (2021). https://doi.org/10.1117/12.2598230

  18. Peillard, E., Itoh, Y., Moreau, G., Normand, J.-M., Lecuyer, A., Argelaguet, F.: Can retinal projection displays improve spatial perception in augmented reality? In: 2020 IEEE Int. Symp. Mix. Augment. Real. ISMAR, 80–89, IEEE, Porto de Galinhas, Brazil (2020). https://doi.org/10.1109/ISMAR50242.2020.00028

  19. Hedili, M. K., Ulusoy, E., Kazempour, S., Soomro, S., Urey, H.: Next generation augmented reality displays. IN: 2018 IEEE Sensors, pp. 1–3 (2018). https://doi.org/10.1109/ICSENS.2018.8589942

  20. Fidler, F., Balbekova, A., Noui, L., Anjou, S., Werner, T., Reitterer, J.: Laser beam scanning in XR: benefits and challenges. In: Proc. SPIE 11765, optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) II, 1176502 (2021). https://doi.org/10.1117/12.2576490

  21. Melena, N. W., Wiersma, J. T.: Pixel size requirements for AR/MR. In: Proc. SPIE 11765, optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) II, 1176505 (2021). https://doi.org/10.1117/12.2584168

  22. Reitterer, J., Chen, Z., Balbekova, A., Schmid, G., Schestak, G., Nassar, F., Dorfmeister, M., Ley, M.: Ultra-compact micro-electro-mechanical laser beam scanner for augmented reality applications. In: Proc. SPIE 11765, optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) II, 1176504 (2021). https://doi.org/10.1117/12.2576704

  23. Primerov, N., Ojeda, J., Gloor, S., Matuschek, N., Rossetti, M., Castiglia, A., Malinverni, M., Duelk, M., Velez, C.: Ultracompact RGB laser diode module for near-to-eye displays. In: Proc. SPIE 11788, digital optical technologies 2021, 117880Q (2021). https://doi.org/10.1117/12.2594243

  24. Nakao, A., Morimoto, R., Kato, Y., Kakinoki, Y., Ogawa, K., Katsuyama, T.: Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays. Opt. Commun. 330, 45–48 (2014)

    Article  ADS  Google Scholar 

  25. Katsuyama, T., Nakao, A., Ogawa, K., Tsujino, K., Takahata, K.: Extremely-small red-green-blue beam combiners for compact projection-type displays. Proc. SPIE 9272, 927203–927211 (2014)

    Article  Google Scholar 

  26. Sakamoto, J., Goh, T., Katayose, S., Watanabe, K., Itoh, M., Hashimoto, T.: Compact and low-loss RGB coupler using mode-conversion waveguides. Opt. Commun. 420, 46–51 (2018)

    Article  ADS  Google Scholar 

  27. Nakao, A., Yamada, S., Katsuyama, T.: Highly-efficient waveguide-type red–green–blue laser beam combiners for compact projection-type displays. Opt. Commun. 501, 127335 (2021)

    Article  Google Scholar 

  28. Nakao, A., Yamada, S., Katsuyama, T., Kawasaki, O., Iwabata, K., Horii, K., Himeno, A.: Compact full-color laser beam scanning image projector based on a waveguide-type RGB combiner. In: Proceedings of the international display workshop (IDW’20), vol. 27, pp. 649–650 (2020)

  29. Katsuyama, T., Nakao, A., Yamada, S., Kawasaki, O., Iwabata, K., Horii, K., Himeno, A.: Compact full-color laser beam projectors based on waveguide-type RGB multiplexers. In: The 10th laser display and lighting conference 2021 (LDC 2021), LDC-3-04 (2021)

  30. Nakao, A., Yamada, S., Katsuyama, T., Kawasaki, O., Iwabata, K., Yabe, Y., Horii, K., Himeno, A.: Compact full-color laser beam scanning image projector based on a waveguide-type RGB combiner. J. Soc. Inform. Display 30, 24–32 (2022). https://doi.org/10.1002/jsid.1078

    Article  Google Scholar 

  31. Keiser, G.: Optical Fiber Communications, 2nd edn. McGraw-Hill Book Company, New York (1991)

    Google Scholar 

  32. Himeno, A., Kato, K., Miya, T.: Silica-based planar lightwave circuits. IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998)

    Article  ADS  Google Scholar 

  33. Hosomi, K., Kikawa, T., Goto, S., Yamada, H., Katsuyama, T., Arakawa, Y.: Ultrahigh-aspect-ratio SiO2 deeply etched periodic structures with smooth surfaces for photonics applications. J. Vac. Sci. Technol. B24, 1226–1229 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Yonezawa, H. Kosugi, H. Higuchi, Y. Kitade, N. Okuno, H. Yoshimoto, K. Tokuda, and Y. Hirose from University of Fukui, and M. Kawasaki, Y. Kamei, K. Horii, A. Himeno, O. Kawasaki, K. Iwabata, and Y. Yabe from SEIREN KST Corp. for their valuable discussion and continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakao, A., Yamada, S. & Katsuyama, T. Efficient waveguide-type four-color (red–green–blue–infrared) laser beam combiner for compact laser beam scanning image projectors. Opt Rev 29, 298–304 (2022). https://doi.org/10.1007/s10043-022-00743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00743-2

Keywords

Navigation