Skip to main content

Advertisement

Log in

17α-estradiol does not adversely affect sperm parameters or fertility in male mice: implications for reproduction-longevity trade-offs

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

17α-estradiol (17α-E2) is referred to as a nonfeminizing estrogen that was recently found to extend healthspan and lifespan in male, but not female, mice. Despite an abundance of data indicating that 17α-E2 attenuates several hallmarks of aging in male rodents, very little is known with regard to its effects on feminization and fertility. In these studies, we evaluated the effects of 17α-E2 on several markers of male reproductive health in two independent cohorts of mice. In alignment with our previous reports, chronic 17α-E2 treatment prevented gains in body mass, but did not adversely affect testes mass or seminiferous tubule morphology. We subsequently determined that chronic 17α-E2 treatment also did not alter plasma 17β-estradiol or estrone concentrations, while mildly increasing plasma testosterone levels. We also determined that chronic 17α-E2 treatment did not alter plasma follicle-stimulating hormone or luteinizing hormone concentrations, which suggests 17α-E2 treatment does not alter gonadotropin-releasing hormone neuronal function. Sperm quantity, morphology, membrane integrity, and various motility measures were also unaffected by chronic 17α-E2 treatment in our studies. Lastly, two different approaches were used to evaluate male fertility in these studies. We found that chronic 17α-E2 treatment did not diminish the ability of male mice to impregnate female mice, or to generate successfully implanted embryos in the uterus. We conclude that chronic treatment with 17α-E2 at the dose most commonly employed in aging research does not adversely affect reproductive fitness in male mice, which suggests 17α-E2 does not extend lifespan or curtail disease parameters through tradeoff effects with reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ioakeim-Skoufa I, Poblador-Plou B, Carmona-Pirez J, Diez-Manglano J, Navickas R, Gimeno-Feliu LA, et al. Multimorbidity patterns in the general population: results from the EpiChron cohort study. Int J Environ Res Public Health. 2020;17. https://doi.org/10.3390/ijerph17124242.

  2. Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Science. 2021;374:eabe7365. https://doi.org/10.1126/science.abe7365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. https://doi.org/10.1016/j.arr.2016.08.005.

    Article  PubMed  Google Scholar 

  4. Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15:872–84. https://doi.org/10.1111/acel.12496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, et al. Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13:273–82. https://doi.org/10.1111/acel.12170.

    Article  CAS  PubMed  Google Scholar 

  6. Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, et al. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell. 2021;20: e13328. https://doi.org/10.1111/acel.13328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mann SN, Hadad N, Nelson Holte M, Rothman AR, Sathiaseelan R, Ali Mondal S, et al. Health benefits attributed to 17alpha-estradiol, a lifespan-extending compound, are mediated through estrogen receptor alpha. Elife. 2020;9. https://doi.org/10.7554/eLife.59616.

  8. Miller BF, Pharaoh GA, Hamilton KL, Peelor FF, Kirkland JL, Freeman WM, et al. Short-term calorie restriction and 17alpha-Estradiol administration elicit divergent effects on proteostatic processes and protein content in metabolically active tissues. J Gerontol A Biol Sci Med Sci. 2020;75:849–57. https://doi.org/10.1093/gerona/glz113.

    Article  CAS  PubMed  Google Scholar 

  9. Sidhom S, Schneider A, Fang Y, McFadden S, Darcy J, Sathiaseelan R, et al. 17alpha-Estradiol modulates IGF1 and hepatic gene expression in a sex-specific manner. J Gerontol A Biol Sci Med Sci. 2021;76:778–85. https://doi.org/10.1093/gerona/glaa215.

    Article  CAS  PubMed  Google Scholar 

  10. Steyn FJ, Ngo ST, Chen VP, Bailey-Downs LC, Xie TY, Ghadami M, et al. 17alpha-estradiol acts through hypothalamic pro-opiomelanocortin expressing neurons to reduce feeding behavior. Aging Cell. 2018;17. https://doi.org/10.1111/acel.12703.

  11. Stout MB, Steyn FJ, Jurczak MJ, Camporez JG, Zhu Y, Hawse JR, et al. 17alpha-Estradiol alleviates age-related metabolic and inflammatory dysfunction in male mice without inducing feminization. J Gerontol A Biol Sci Med Sci. 2017;72:3–15. https://doi.org/10.1093/gerona/glv309.

    Article  CAS  PubMed  Google Scholar 

  12. Garratt M, Bower B, Garcia GG, Miller RA. Sex differences in lifespan extension with acarbose and 17-alpha estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell. 2017;16:1256–66. https://doi.org/10.1111/acel.12656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garratt M, Lagerborg KA, Tsai YM, Galecki A, Jain M, Miller RA. Male lifespan extension with 17-alpha estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell. 2018;17: e12786. https://doi.org/10.1111/acel.12786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Debarba LK, Jayarathne HSM, Miller RA, Garratt M, Sadagurski M. 17-alpha-Estradiol has sex-specific effects on neuroinflammation that are partly reversed by gonadectomy. J Gerontol A Biol Sci Med Sci. 2022;77:66–74. https://doi.org/10.1093/gerona/glab216.

    Article  CAS  PubMed  Google Scholar 

  15. Garratt M, Stout MB. Hormone actions controlling sex-specific life-extension. Aging (Albany NY). 2018;10:293–4. https://doi.org/10.18632/aging.101396.

    Article  PubMed  Google Scholar 

  16. Garratt M, Leander D, Pifer K, Bower B, Herrera JJ, Day SM, et al. 17-alpha estradiol ameliorates age-associated sarcopenia and improves late-life physical function in male mice but not in females or castrated males. Aging Cell. 2019;18: e12920. https://doi.org/10.1111/acel.12920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia DN, Saccon TD, Pradiee J, Rincon JAA, Andrade KRS, Rovani MT, et al. Effect of caloric restriction and rapamycin on ovarian aging in mice. Geroscience. 2019;41:395–408. https://doi.org/10.1007/s11357-019-00087-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin X, Du D, Chen Q, Wu M, Wu T, Wen J, et al. Metformin prevents murine ovarian aging. Aging (Albany NY). 2019;11:3785–94. https://doi.org/10.18632/aging.102016.

    Article  CAS  PubMed  Google Scholar 

  19. Selesniemi K, Lee HJ, Tilly JL. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell. 2008;7:622–9. https://doi.org/10.1111/j.1474-9726.2008.00409.x.

    Article  CAS  PubMed  Google Scholar 

  20. Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med. 2011;32:159–221. https://doi.org/10.1016/j.mam.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  21. Cameron JL, Nosbisch C. Suppression of pulsatile luteinizing hormone and testosterone secretion during short term food restriction in the adult male rhesus monkey (Macaca mulatta). Endocrinology. 1991;128:1532–40. https://doi.org/10.1210/endo-128-3-1532.

    Article  CAS  PubMed  Google Scholar 

  22. Sitzmann BD, Leone EH, Mattison JA, Ingram DK, Roth GS, Urbanski HF, et al. Effects of moderate calorie restriction on testosterone production and semen characteristics in young rhesus macaques (Macaca mulatta). Biol Reprod. 2010;83:635–40. https://doi.org/10.1095/biolreprod.110.084186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sitzmann BD, Mattison JA, Ingram DK, Roth GS, Ottinger MA, Urbanski HF. Impact of moderate calorie restriction on the reproductive neuroendocrine axis of male Rhesus Macaques. Open Longev Sci. 2010;3:38–47. https://doi.org/10.2174/1876326X00903010038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Compagnucci C, Compagnucci GE, Lomniczi A, Mohn C, Vacas I, Cebral E, et al. Effect of nutritional stress on the hypothalamo-pituitary-gonadal axis in the growing male rat. NeuroImmunoModulation. 2002;10:153–62. https://doi.org/10.1159/000067177.

    Article  CAS  PubMed  Google Scholar 

  25. Martins AD, Jarak I, Morais T, Carvalho RA, Oliveira PF, Monteiro MP, et al. Caloric restriction alters the hormonal profile and testicular metabolome, resulting in alterations of sperm head morphology. Am J Physiol Endocrinol Metab. 2020;318:E33–43. https://doi.org/10.1152/ajpendo.00355.2019.

    Article  CAS  PubMed  Google Scholar 

  26. Rizzoto G, Sekhar D, Thundathil JC, Chelikani PK, Kastelic JP. Calorie restriction modulates reproductive development and energy balance in pre-pubertal male rats. Nutrients. 2019;11. https://doi.org/10.3390/nu11091993.

  27. Rocha JS, Bonkowski MS, de Franca LR, Bartke A. Effects of mild calorie restriction on reproduction, plasma parameters and hepatic gene expression in mice with altered GH/IGF-I axis. Mech Ageing Dev. 2007;128:317–31. https://doi.org/10.1016/j.mad.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  28. Cavanaugh TM, Schoenemen H, Goebel J. The impact of sirolimus on sex hormones in male adolescent kidney recipients. Pediatr Transplant. 2012;16:280–5. https://doi.org/10.1111/j.1399-3046.2012.01647.x.

    Article  CAS  PubMed  Google Scholar 

  29. Kirsanov O, Renegar RH, Busada JT, Serra ND, Harrington EV, Johnson TA, et al. The rapamycin analog Everolimus reversibly impairs male germ cell differentiation and fertility in the mousedagger. Biol Reprod. 2020;103:1132–43. https://doi.org/10.1093/biolre/ioaa130.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu S, Huang L, Geng Y, He J, Chen X, Xu H, et al. Rapamycin inhibits spermatogenesis by changing the autophagy status through suppressing mechanistic target of rapamycin-p70S6 kinase in male rats. Mol Med Rep. 2017;16:4029–37. https://doi.org/10.3892/mmr.2017.7120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isola JVV, Zanini BM, Hense JD, Alvarado-Rincon JA, Garcia DN, Pereira GC, et al. Mild calorie restriction, but not 17alpha-estradiol, extends ovarian reserve and fertility in female mice. Exp Gerontol. 2022;159: 111669. https://doi.org/10.1016/j.exger.2021.111669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramu S, Jeyendran RS. The hypo-osmotic swelling test for evaluation of sperm membrane integrity. Methods Mol Biol. 2013;927:21–5. https://doi.org/10.1007/978-1-62703-038-0_3.

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal A, Gupta S, Sharma R. Hypoosmotic swelling test (HOS). Andrological evaluation of male infertility. Springer; 2016:93–96.

  34. Wu Y, Zhong A, Zheng H, Jiang M, Xia Z, Yu J, et al. Expression of flotilin-2 and acrosome biogenesis are regulated by MiR-124 during spermatogenesis. PLoS ONE. 2015;10: e0136671. https://doi.org/10.1371/journal.pone.0136671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bruner-Tran KL, Ding T, Yeoman KB, Archibong A, Arosh JA, Osteen KG. Developmental exposure of mice to dioxin promotes transgenerational testicular inflammation and an increased risk of preterm birth in unexposed mating partners. PLoS ONE. 2014;9: e105084. https://doi.org/10.1371/journal.pone.0105084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan JT, Gatti DM, Philip VM, Kasparek S, Kreuzman AM, Mansky B, et al. Genome-wide association for testis weight in the diversity outbred mouse population. Mamm Genome. 2018;29:310–24. https://doi.org/10.1007/s00335-018-9745-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tajaddini S, Ebrahimi S, Behnam B, Bakhtiyari M, Joghataei MT, Abbasi M, et al. Antioxidant effect of manganese on the testis structure and sperm parameters of formalin-treated mice. Andrologia. 2014;46:246–53. https://doi.org/10.1111/and.12069.

    Article  CAS  PubMed  Google Scholar 

  38. Schriefers H, Wright MC, Rozman T. Hevert F [Inhibition of testosterone metabolism by 17-alpha-estradiol in rat liver slices]. Arzneimittelforschung. 1991;41:1186–9.

    CAS  PubMed  Google Scholar 

  39. Hong SK, Min GE, Ha SB, Doo SH, Kang MY, Park HJ, et al. Effect of the dual 5alpha-reductase inhibitor, dutasteride, on serum testosterone and body mass index in men with benign prostatic hyperplasia. BJU Int. 2010;105:970–4. https://doi.org/10.1111/j.1464-410X.2009.08915.x.

    Article  CAS  PubMed  Google Scholar 

  40. Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism. 2018;86:3–17. https://doi.org/10.1016/j.metabol.2017.11.018.

    Article  CAS  PubMed  Google Scholar 

  41. O’Donnell L, Robertson KM, Jones ME, Simpson ER. Estrogen and spermatogenesis. Endocr Rev. 2001;22:289–318. https://doi.org/10.1210/edrv.22.3.0431.

    Article  CAS  PubMed  Google Scholar 

  42. Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345:1388–93. https://doi.org/10.1056/NEJMoa003005.

    Article  CAS  PubMed  Google Scholar 

  43. Mortimer ST. CASA–practical aspects. J Androl. 2000;21:515–24.

    CAS  PubMed  Google Scholar 

  44. Harrison RA, Vickers SE. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J Reprod Fertil. 1990;88:343–52. https://doi.org/10.1530/jrf.0.0880343.

    Article  CAS  PubMed  Google Scholar 

  45. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol. 2014;397:4–14. https://doi.org/10.1016/j.mce.2014.09.027.

    Article  CAS  PubMed  Google Scholar 

  46. Moverare-Skrtic S, Venken K, Andersson N, Lindberg MK, Svensson J, Swanson C, et al. Dihydrotestosterone treatment results in obesity and altered lipid metabolism in orchidectomized mice. Obesity (Silver Spring). 2006;14:662–72. https://doi.org/10.1038/oby.2006.75.

    Article  CAS  PubMed  Google Scholar 

  47. Melner MH, Abney TO. The direct effect of 17 beta-estradiol on LH-stimulated testosterone production in hypophysectomized rats. J Steroid Biochem. 1980;13:203–10. https://doi.org/10.1016/0022-4731(80)90193-4.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Z, Wu W, Kim MS, Cai D. GnRH pulse frequency and irregularity play a role in male aging. Nature Aging. 2021;1:1068–1068. https://doi.org/10.1038/s43587-021-00137-0.

    Article  PubMed  Google Scholar 

  49. Akingbemi BT. Estrogen regulation of testicular function. Reprod Biol Endocrinol. 2005;3:51. https://doi.org/10.1186/1477-7827-3-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahendroo MS, Cala KM, Hess DL, Russell DW. Unexpected virilization in male mice lacking steroid 5 alpha-reductase enzymes. Endocrinology. 2001;142:4652–62. https://doi.org/10.1210/endo.142.11.8510.

    Article  CAS  PubMed  Google Scholar 

  51. Bromfield JJ, Schjenken JE, Chin PY, Care AS, Jasper MJ, Robertson SA. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc Natl Acad Sci U S A. 2014;111:2200–5. https://doi.org/10.1073/pnas.1305609111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Coordination for the Improvement of Higher Education Personnel (CAPES) (J. V. V. I.), Brazilian National Council for Scientific and Technological Development (CNPq) (A. S.), Research Support Foundation of the State of Rio Grande do Sul (FAPERGS) (A. S.), and the National Institutes of Health (R01 AG069742 to M. B. S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Augusto Schneider or Michael B. Stout.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isola, J.V.V., Veiga, G.B., de Brito, C.R.C. et al. 17α-estradiol does not adversely affect sperm parameters or fertility in male mice: implications for reproduction-longevity trade-offs. GeroScience 45, 2109–2120 (2023). https://doi.org/10.1007/s11357-022-00601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00601-8

Keywords

Navigation