Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T08:47:35.969Z Has data issue: false hasContentIssue false

Betahistine Attenuates Seizures, Neurodegeneration, Apoptosis, and Gliosis in the Cerebral Cortex and Hippocampus in a Mouse Model of Epilepsy: A Histological, Immunohistochemical, and Biochemical Study

Published online by Cambridge University Press:  10 June 2022

Amany Mohamed Shalaby*
Affiliation:
Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
Heba E.M. Sharaf Eldin
Affiliation:
Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
Ahmed Ahmed Abdelsameea
Affiliation:
Department of Pharmacology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
Hanim Magdy Abdelnour
Affiliation:
Medical Biochemistry Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
Mohamed Ali Alabiad
Affiliation:
Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
Mahmoud Ramadan Elkholy
Affiliation:
Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
Adel Mohamed Aboregela
Affiliation:
Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt Basic Medical Sciences Department, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
*
*Corresponding author: Amany Mohamed Shalaby, E-mail: amany.shalaby@med.tanta.edu.eg
Get access

Abstract

Epilepsy is a prevalent and chronic neurological disorder marked by recurring, uncontrollable seizures of the brain. Chronic or repeated seizures produce memory problems and induce damage to different brain regions. Histamine has been reported to have neuroprotective effects. Betahistine is a histamine analogue. The current research investigated the effects of convulsions on the cerebral cortex and hippocampus of adult male albino mice and assessed the possible protective effect of betahistine. Four groups of 40 adult male mice were organized: control, betahistine (10 mg/kg/day), pentylenetetrazole (PTZ) (40 mg/kg/ on alternate days), and Betahistine-PTZ group received betahistine 1 h before PTZ. PTZ induced a substantial rise in glutamate level and a considerable decrease in histamine level. Structural changes in the cerebral cortex and cornu ammonis (CA1) of the hippocampus were detected in the pattern of neuron degeneration. Some neurons were shrunken with dark nuclei, and others had faintly stained ones. Focal accumulation of neuroglial cells and ballooned nerve cells of the cerebral cortex were also detected. Cleaved caspase-3, glial fibrillary acidic protein, and ionized calcium-binding adaptor molecule 1 showed substantial increases, while synaptophysin expression was significantly reduced. Interestingly, these changes were less prominent in mice pretreated with betahistine. In conclusion, betahistine had shown neuroprotective properties against brain damage induced by convulsions.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulqader, YAY, Kawy, HSA, Alkreathy, HM & Rajeh, NA (2021). The potential antiepileptic activity of astaxanthin in epileptic rats treated with valproic acid. Saudi Pharm J 29, 418426.CrossRefGoogle Scholar
Alachkar, A, Azimullah, S, Lotfy, M, Adeghate, E, Ojha, SK, Beiram, R, Łażewska, D, Kieć-Kononowicz, K & Sadek, B (2020). Antagonism of histamine H3 receptors alleviates pentylenetetrazole-induced kindling and associated memory deficits by mitigating oxidative stress, central neurotransmitters, and c-fos protein expression in rats. Molecules 25, 1575.CrossRefGoogle ScholarPubMed
Alonso-Nanclares, L, Kastanauskaite, A, Rodriguez, J-R, Gonzalez-Soriano, J & Defelipe, J (2011). A stereological study of synapse number in the epileptic human hippocampus. Front Neuroanat 5, 8.CrossRefGoogle ScholarPubMed
Armstrong, D, Halliday, W, Hawkings, C & Takashima, S (2008). Pediatric Neuropathology: A Text-Atlas. Tokyo, Japan: Springer Science & Business Media, pp. 376384.Google Scholar
Aronica, E, Bauer, S, Bozzi, Y, Caleo, M, Dingledine, R, Gorter, JA, Henshall, DC, Kaufer, D, Koh, S & Löscher, W (2017). Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 58, 2738.CrossRefGoogle ScholarPubMed
Bhowmik, M, Khanam, R & Vohora, D (2012). Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: A systemic consideration of recent progress and perspectives. Br J Pharmacol 167, 13981414.CrossRefGoogle Scholar
Blandina, P, Munari, L, Giannoni, P, Mariottini, C & Passani, MB (2010). Histamine neuronal system as a therapeutic target for the treatment of cognitive disorders. Future Neurol 5, 543555.CrossRefGoogle Scholar
Cho, C-H (2013). New mechanism for glutamate hypothesis in epilepsy. Front Cell Neurosci 7, 127.10.3389/fncel.2013.00127CrossRefGoogle ScholarPubMed
Dudek, FE & Staley, KJ (2011). The time course of acquired epilepsy: Implications for therapeutic intervention to suppress epileptogenesis. Neurosci Lett 497, 240246.CrossRefGoogle ScholarPubMed
Eiriz, MF, Valero, J, Malva, JO & Bernardino, L (2014). New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis. Front Neurosci 8, 142.CrossRefGoogle ScholarPubMed
Eloqayli, H, Dahl, CB, Götestam, KG, Unsgård, G, Hadidi, H & Sonnewald, U (2003). Pentylenetetrazole decreases metabolic glutamate turnover in rat brain. J Neurochem 85, 12001207.CrossRefGoogle ScholarPubMed
Elshony, N, Nassar, AM, El-Sayed, YS, Samak, D, Noreldin, A, Wasef, L, Saleh, H, Elewa, YH, Tawfeek, SE & Saati, AA (2021). Ameliorative role of cerium oxide nanoparticles against fipronil impact on brain function, oxidative stress, and apoptotic cascades in albino rats. Front Neurosci 15, 651471.CrossRefGoogle ScholarPubMed
Erden, M & Bor, NM (1984). Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in Guinea pigs. Biochem Med 31, 217227.CrossRefGoogle ScholarPubMed
Erkec, ÖE & Arihan, O (2015). Pentylenetetrazole kindling epilepsy model. Epilepsi: J Turkish Epilepsi Soc 21, 612.Google Scholar
Eyo, UB, Murugan, M & Wu, LJ (2017). Microglia–neuron communication in epilepsy. Glia 65, 518.CrossRefGoogle ScholarPubMed
Farrell, JS, Wolff, MD & Teskey, GC (2017). Neurodegeneration and pathology in epilepsy: Clinical and basic perspectives. Neurodegener Dis 15, 317334.CrossRefGoogle ScholarPubMed
Free, R, Clark, J, Amara, S & Sibley, D (2018). Neurotransmission in the central nervous system. In Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13th ed. Brunton, LL, Hilal-Dandan, R & Knollmann, BC (Eds.). New York: McGraw-Hill Education, 170349771.Google Scholar
Gamble, M (2008). The hematoxylins and eosin. In Theory and Practice of Histological Techniques, 6th ed. Bancroft, JD & Gamble, M (Eds.), pp. 121135. Philadelphia, PA: Churchill Livingstone, Elsevier.CrossRefGoogle Scholar
Gol, M, Ghorbanian, D, Hassanzadeh, S, Javan, M, Mirnajafi-Zadeh, J & Ghasemi-Kasman, M (2017). Fingolimod enhances myelin repair of hippocampus in pentylenetetrazol-induced kindling model. Eur J Pharm Sci 96, 7283.CrossRefGoogle ScholarPubMed
Guilloux, J-P, Samuels, BA, Mendez-David, I, Hu, A, Levinstein, M, Faye, C, Mekiri, M, Mocaer, E, Gardier, AM & Hen, R (2017). S 38093, a histamine H3 antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice. Sci Rep 7, 113.10.1038/srep42946CrossRefGoogle ScholarPubMed
Haas, HL, Sergeeva, OA & Selbach, O (2008). Histamine in the nervous system. Physiol Rev 88, 11831241.CrossRefGoogle ScholarPubMed
Hamby, ME & Sofroniew, MV (2010). Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7, 494506.CrossRefGoogle ScholarPubMed
He, W, Yuan, Q & Zhou, Q (2018). Histamine H3 receptor antagonist Clobenpropit protects propofol-induced apoptosis of hippocampal neurons through PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 22, 80138020.Google ScholarPubMed
Hussein, AM, Adel, M, El-Mesery, M, Abbas, KM, Ali, AN & Abulseoud, OA (2018). L-carnitine modulates epileptic seizures in pentylenetetrazole-kindled rats via suppression of apoptosis and autophagy and upregulation of hsp70. Brain Sci 8, 45.CrossRefGoogle ScholarPubMed
Kamei, C (2001). Involvement of central histamine in amygdaloid kindled seizures in rats. Behav Brain Res 124, 243250.CrossRefGoogle ScholarPubMed
Karimzadeh, F, Hosseini, M, Mangeng, D, Alavi, H, Hassanzadeh, GR, Bayat, M, Jafarian, M, Kazemi, H & Gorji, A (2012). Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain. BMC Complement Altern Med 12, 19.CrossRefGoogle ScholarPubMed
Khatoon, S, Agarwal, NB, Samim, M & Alam, O (2021). Neuroprotective effect of fisetin through suppression of IL-1R/TLR axis and apoptosis in pentylenetetrazole-induced kindling in mice. Front Neurol 12, 1152.CrossRefGoogle ScholarPubMed
Kherani, ZS & Auer, RN (2008). Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex. Acta Neuropathol 116, 447.CrossRefGoogle ScholarPubMed
Kumar, V, Abbas, AK, Fausto, N & Aster, JC (2015). Robbins and Cotran Pathologic Basis of Disease. 9th ed., Philadelphia, PA, USA: Elsevier, Saunders, p. 42.Google Scholar
Lacour, M (2013). Betahistine treatment in managing vertigo and improving vestibular compensation: Clarification. J Vestib Res 23, 139151.CrossRefGoogle ScholarPubMed
Loewen, JL, Barker-Haliski, ML, Dahle, EJ, White, HS & Wilcox, KS (2016). Neuronal injury, gliosis, and glial proliferation in two models of temporal lobe epilepsy. J Neuropathol Exp Neurol 75, 366378.CrossRefGoogle ScholarPubMed
Löscher, W (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20, 359368.CrossRefGoogle ScholarPubMed
Losi, G, Cammarota, M & Carmignoto, G (2012). The role of astroglia in the epileptic brain. Front Pharmacol 3, 132.CrossRefGoogle ScholarPubMed
Lu, C-W, Lin, T-Y, Chang, C-Y, Huang, S-K & Wang, S-J (2017). Ciproxifan, a histamine H3 receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus. Toxicol Appl Pharmacol 319, 1221.CrossRefGoogle ScholarPubMed
Mahmoudi, T, Lorigooini, Z, Rafieian-Kopaei, M, Arabi, M, Rabiei, Z, Bijad, E & Kazemi, S (2020). Effect of Curcuma zedoaria hydro-alcoholic extract on learning, memory deficits and oxidative damage of brain tissue following seizures induced by pentylenetetrazole in rat. Behav Brain Funct 16, 112.CrossRefGoogle ScholarPubMed
Mariottini, C, Scartabelli, T, Bongers, G, Arrigucci, S, Nosi, D, Leurs, R, Chiarugi, A, Blandina, P, Pellegrini-Giampietro, DE & Beatrice Passani, M (2009). Activation of the histaminergic H3 receptor induces phosphorylation of the Akt/GSK-3β pathway in cultured cortical neurons and protects against neurotoxic insults. J Neurochem 110, 14691478.CrossRefGoogle Scholar
Martinc, B, Grabnar, I & Vovk, T (2014). Antioxidants as a preventive treatment for epileptic process: A review of the current status. Curr Neuropharmacol 12, 527550.CrossRefGoogle ScholarPubMed
Mirrione, MM & Tsirka, SE (2011). A functional role for microglia in epilepsy. IntechOpen 10, 7278.Google Scholar
Mishra, CB, Kumari, S, Siraj, F, Yadav, R, Kumari, S, Tiwari, AK & Tiwari, M (2018). The anti-epileptogenic and cognition enhancing effect of novel 1-[4-(4-benzo [1, 3] dioxol-5-ylmethyl-piperazin-1-yl)-phenyl]-3-phenyl-urea (BPPU) in pentylenetetrazole induced chronic rat model of epilepsy. Biomed Pharmacother 105, 470480.CrossRefGoogle ScholarPubMed
Miyajima, N, Ito, M, Rokugawa, T, Iimori, H, Momosaki, S, Omachi, S, Shimosegawa, E, Hatazawa, J & Abe, K (2018). Detection of neuroinflammation before selective neuronal loss appearance after mild focal ischemia using [18F] DPA-714 imaging. EJNMMI Res 8, 112.CrossRefGoogle Scholar
Naseer, MI, Ullah, I, Ullah, N, Lee, HY, Cheon, EW, Chung, J & Kim, MO (2011). Neuroprotective effect of vitamin C against PTZ induced apoptotic neurodegeneration in adult rat brain. Pak J Pharm Sci 24, 263268.Google ScholarPubMed
Ohkawa, H, Ohishi, N & Yagi, K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95, 351358.10.1016/0003-2697(79)90738-3CrossRefGoogle ScholarPubMed
Passani, MB & Blandina, P (2011). Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol Sci 32, 242249.CrossRefGoogle ScholarPubMed
Pawley, AD, Chowdhury, FA, Tangwiriyasakul, C, Ceronie, B, Elwes, RD, Nashef, L & Richardson, MP (2017). Cortical excitability correlates with seizure control and epilepsy duration in chronic epilepsy. Ann Clin Transl Neurol 4, 8797.CrossRefGoogle ScholarPubMed
Porter, R & Rogawsk, M.2017). Anti-seizure drugs. In Basic and Clinical Pharmacology, 14th ed., Katzung, BG (Ed.), New York: McGraw-Hill Education, 175219008.Google Scholar
Proper, E, Oestreicher, A, Jansen, G, Veelen, CV, Van Rijen, P, Gispen, W & De Graan, P (2000). Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 123, 1930.CrossRefGoogle ScholarPubMed
Rocha, SM, Pires, J, Esteves, M, Graça, B & Bernardino, L (2014). Histamine: A new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci 8, 120.CrossRefGoogle ScholarPubMed
Sadek, B, Saad, A, Latacz, G, Kuder, K, Olejarz, A, Karcz, T, Stark, H & Kieć-Kononowicz, K (2016 a). Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. Drug Design, Devel Ther 10, 3879.CrossRefGoogle ScholarPubMed
Sadek, B, Saad, A, Subramanian, D, Shafiullah, M, Łażewska, D & Kieć-Kononowiczc, K (2016 b). Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology 106, 4655.CrossRefGoogle ScholarPubMed
Saraiva, C, Barata-Antunes, S, Santos, T, Ferreiro, E, Cristóvão, AC, Serra-Almeida, C, Ferreira, R & Bernardino, L (2019). Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci Rep 9, 112.CrossRefGoogle ScholarPubMed
Schmittgen, TD & Livak, KJ (2008). Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3, 11011108.CrossRefGoogle Scholar
Seghatoleslam, M, Alipour, F, Shafieian, R, Hassanzadeh, Z, Edalatmanesh, MA, Sadeghnia, HR & Hosseini, M (2016). The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med 6, 262268.CrossRefGoogle ScholarPubMed
Seifert, G, Schilling, K & Steinhäuser, C (2006). Astrocyte dysfunction in neurological disorders: A molecular perspective. Nat Rev Neurosci 7, 194206.CrossRefGoogle ScholarPubMed
Shalaby, AM, Hamid Ibrahim, MAA & Aboregela, AM (2019). Effect of aspartame on the placenta of adult albino rat. A Histological and Immunohistochemical Study. Ann Anat 224, 133141.CrossRefGoogle Scholar
Shi, Y, Miao, W, Teng, J & Zhang, L (2018). Ginsenoside Rb1 protects the brain from damage induced by epileptic seizure via Nrf2/ARE signaling. Cell Physiol Biochem 45, 212225.CrossRefGoogle ScholarPubMed
Sudha, K, Rao, AV & Rao, A (2001). Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303, 1924.CrossRefGoogle ScholarPubMed
Szyndler, J, Piechal, A, Blecharz-Klin, K, Skórzewska, A, Maciejak, P, Walkowiak, J, Turzyñska, D, Bidziñski, A, Plaznik, A & Widy-Tyszkiewicz, E (2006). Effect of kindled seizures on rat behavior in water morris maze test and amino acid concentrations in brain structures. Pharmacol Rep 58, 75.Google ScholarPubMed
Tai, X, Bernhardt, B, Thom, M, Thompson, P, Baxendale, S, Koepp, M & Bernasconi, N (2018). Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 44, 7090.CrossRefGoogle ScholarPubMed
Tawfeek, SE, Shalaby, AM, Alabiad, MA, Albackoosh, A-AAA, Albakoush, KMM & Omira, MMA (2021). Metanil yellow promotes oxidative stress, astrogliosis, and apoptosis in the cerebellar cortex of adult male rat with possible protective effect of scutellarin: A histological and immunohistochemical study. Tissue and Cell 73, 101624.CrossRefGoogle ScholarPubMed
Tüfekçi, A, Koyuncuoğlu, HR, Kirbaş, S, Ramazan Yilmaz, H & Kirbaş, A (2013). The effects of pregabalin on cerebral cortical oxidative stress of rats on pentylenetetrazole induced epileptic seizure. Epilepsi: J Turkish Epilepsi Soc 19, 714.CrossRefGoogle Scholar
Victor, TR & Tsirka, SE (2020). Microglial contributions to aberrant neurogenesis and pathophysiology of epilepsy. Neuroimmunol Neuroinflamm 7, 234.Google ScholarPubMed
Vohora, D, Pal, S & Pillai, K (2001). Histamine and selective H3-receptor ligands: A possible role in the mechanism and management of epilepsy. Pharmacol Biochem Behav 68, 735741.CrossRefGoogle ScholarPubMed
Werner, F-M & Coveñas, R (2011). Classical neurotransmitters and neuropeptides involved in generalized epilepsy: A focus on antiepileptic drugs. Curr Med Chem 18, 49334948.CrossRefGoogle ScholarPubMed
Xu, D, Miller, S & Koh, S (2013). Immune mechanisms in epileptogenesis. Front Cell Neurosci 7, 195.CrossRefGoogle ScholarPubMed
Xu, J, Zhang, X, Qian, Q, Wang, Y, Dong, H, Li, N, Qian, Y & Jin, W (2018). Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J Neuroinflammation 15, 110.CrossRefGoogle ScholarPubMed
Yazdi, A, Doostmohammadi, M, Majarshin, FP & Beheshti, S (2020). Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav 105, 106956.CrossRefGoogle ScholarPubMed
Zanuzzi, CN, Nishida, F, Sisti, MS, Barbeito, CG & Portiansky, EL (2019). Reactivity of microglia and astrocytes after an excitotoxic injury induced by kainic acid in the rat spinal cord. Tissue Cell 56, 3140.CrossRefGoogle ScholarPubMed
Zhang, L, Ma, Y & Li, Q (2006). Effects of endogenous histamine on memory impairment induced by pentylenetetrazole-kindled epilepsy in rats. Zhejiang Da Xue Xue Bao Yi Xue Ban = J Zhejiang Univ. Med Sci 35, 630634.Google ScholarPubMed