Skip to main content
Log in

Composite Film Based on Whey Protein Isolate/Pectin/CuO Nanoparticles/Betanin Pigments; Investigation of Physicochemical Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of this work was to preparation of edible films based on whey protein isolate/pectin (WPIP) that containing betanin pigments (BP) and copper (I) oxide nanoparticles (CuO). To do so, effects three different levels of betanin pigments (BP) (%W/V = 0, 2.5 and 5) and copper (I) oxide nanoparticles (CuO) (%W/V = 0, 2, 4) were evaluated via a central composite design to scrutinize the physical–chemical characteristics of the produced nanocomposite film. The results showed that betanin pigments and copper (I) oxide nanoparticles increased the antioxidant capacity and decreased the water vapor permeability of the samples (P < 0.05). Also, an increase in redness (a*) index and decrease in lightness (L*) and yellowness (b*) indices were observed following the addition of betanin pigments. Addition of the nanoparticles displayed no effect on (a*) index but decreased the (b*) index. It was found that combined application of pigments and nanoparticles increased the tensile strength and elongation at the breaking point, which was statistically significant (P < 0.05). In general, the addition of BP and CuO increased the thickness, moisture and antioxidant capacity of the samples and decreased the solubility, WVP (P < 0.05). Results of Fourier-transform infrared spectroscopy (FT-IR) analysis suggested an electrostatic interaction between WPIP, the nanoparticle and the pigment. The X-ray differentiation images showed that films containing the nanoparticles and pigments reduced the crystalline structure of the WPIP. Differential scanning calorimeter outputs of the film samples containing the nanoparticles and betanin displayed stronger thermal stability. Moreover, the field emission scanning electron microscopy results showed that the BN and CuO contributes to the cohesiveness of the surface particles and decreases the gap and crack sizes. Finally, the analysis of antimicrobial activity against E. coli and B. cereus showed that BP and CuO increases the diameter of zone of inhibition (halo) and the films displayed high antimicrobial activity. In general, it can be stated that inclusion of betanin pigment (BP) and NOC in the nanocomposite film formula results in physical–chemical and structural improvement of the nanocomposite film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babapour H, Jalali H, Mohammadi Nafchi A (2021) The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films. Food Sci Nutr 9:3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sani IK, Pirsa S, Tağı Ş (2019) Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym Test 79:106004

    Article  CAS  Google Scholar 

  3. Sani IK, Marand SA, Alizadeh M, Amiri S, Asdagh A (2021) Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/encapsulated Melissa officinalis essential oil. J Inorg Organomet Polym Mater 31(1):261–271

    Article  CAS  Google Scholar 

  4. Asdagh A, Pirsa S (2020) Bacterial and oxidative control of local butter with smart/active film based on pectin/nanoclay/Carum copticum essential oils/β-carotene. Int J Biol Macromol 165:156–168

    Article  CAS  PubMed  Google Scholar 

  5. Rasul NH, Asdagh A, Pirsa S, Ghazanfarirad N, Sani IK (2022) Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Mater Res Express 9(2):025306

    Article  Google Scholar 

  6. Pirsa S, Sani IK, Mirtalebi SS (2022) Nano-biocomposite based color sensors: investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 31:100789

    Article  CAS  Google Scholar 

  7. Galus S, Kadzińska J (2016) Whey protein edible films modified with almond and walnut oils. Food Hydrocoll 52:78–86

    Article  CAS  Google Scholar 

  8. Haghighatpanah N, Omar-Aziz M, Gharaghani M, Khodaiyan F, Hosseini SS, Kennedy JF (2022) Effect of mung bean protein isolate/pullulan films containing marjoram (Origanum majorana L.) essential oil on chemical and microbial properties of minced beef meat. Int J Biol Macromol 201:318

    Article  CAS  PubMed  Google Scholar 

  9. Shivangi S, Dorairaj D, Negi PS, Shetty NP (2021) Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll 121:107046

    Article  CAS  Google Scholar 

  10. Sood A, Saini CS (2022) Red pomelo peel pectin based edible composite films: effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocoll 123:107135

    Article  CAS  Google Scholar 

  11. Asdagh A, Sani IK, Pirsa S, Amiri S, Shariatifar N, Eghbaljoo-Gharehgheshlaghi H, Taniyan A (2021) Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. J Polym Environ 29(1):335–349

    Article  CAS  Google Scholar 

  12. Li X, Ren Z, Wang R, Liu L, Zhang J, Ma F, Liu X (2021) Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles. Food Chem 349:129208

    Article  CAS  PubMed  Google Scholar 

  13. Chikara N, Kushwaha K, Sharma P, Gat Y, Panghal A (2019) Bioactive compounds of beetroot and utilization in food processing industry: a critical review. Food Chem 272:192–200

    Article  CAS  Google Scholar 

  14. Mesgari M, Aalami AH, Sathyapalan T, Sahebkar A (2022) A comprehensive review of the development of carbohydrate macromolecules and copper oxide nanocomposite films in food nanopackaging. Bioinorg Chem Appl 2022:1–28

    Article  CAS  Google Scholar 

  15. Etxabide A, Kilmartin PA, Maté JI (2021) Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control 121:107645

    Article  CAS  Google Scholar 

  16. Gengatharan A, Dykes GA, Choo WS (2017) The effect of pH treatment and refrigerated storage on natural colourant preparations (betacyanins) from red pitahaya and their potential application in yoghurt. LWT 80:437–445

    Article  CAS  Google Scholar 

  17. Etxabide A, Maté JI, Kilmartin PA (2021) Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocoll 115:106593

    Article  CAS  Google Scholar 

  18. Ghasempour Z, Khodaeivandi S, Ahangari H, Hamishehkar H, Amjadi S, Moghaddas Kia E, Ehsani A (2022) Characterization and optimization of Persian gum/whey protein bionanocomposite films containing betanin nanoliposomes for food packaging utilization. J Polym Environ 2022:1–12

    Google Scholar 

  19. Peighambardoust SJ, Peighambardoust SH, Pournasir N, Pakdel PM (2019) Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag Shelf Life 22:100420

    Article  Google Scholar 

  20. Silva KS, Fonseca TMR, Amado LR, Mauro MA (2018) Physicochemical and microstructural properties of whey protein isolate-based films with addition of pectin. Food Packag Shelf Life 16:122–128

    Article  Google Scholar 

  21. Nisar T, Wang ZC, Yang X, Tian Y, Iqbal M, Guo Y (2018) Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int J Biol Macromol 106:670–680

    Article  CAS  PubMed  Google Scholar 

  22. Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39(5):639–644

    Article  CAS  Google Scholar 

  23. Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113(4):511–519

    Article  CAS  Google Scholar 

  24. Jahed E, Khaledabad MA, Almasi H, Hasanzadeh R (2017) Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydr Polym 164:325–338

    Article  CAS  PubMed  Google Scholar 

  25. Mei LX, Nafchi AM, Ghasemipour F, Easa AM, Jafarzadeh S, Al-Hassan AA (2020) Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. Int J Biol Macromol 164:4603–4612

    Article  CAS  Google Scholar 

  26. Sani IK, Geshlaghi SP, Pirsa S, Asdagh A (2021) Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll 117:106719

    Article  CAS  Google Scholar 

  27. Ekramian S, Abbaspour H, Roudi B, Amjad L, Nafchi AM (2021) Influence of Nigella sativa L. extract on physico-mechanical and antimicrobial properties of sago starch film. J Polym Environ 29(1):201–208

    Article  CAS  Google Scholar 

  28. Karimi Sani I, Alizadeh M, Pirsa S, Moghaddas Kia E (2019) Impact of operating parameters and wall material components on the characteristics of microencapsulated Melissa officinalis essential oil. Flavour Fragr J 34(2):104–112

    Article  CAS  Google Scholar 

  29. Omar-Aziz M, Gharaghani M, Hosseini SS, Khodaiyan F, Mousavi M, Askari G, Kennedy JF (2021) Effect of octenylsuccination of pullulan on mechanical and barrier properties of pullulan-chickpea protein isolate composite film. Food Hydrocoll 121:107047

    Article  CAS  Google Scholar 

  30. Tavares L, Souza HK, Gonçalves MP, Rocha CM (2021) Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll 113:106471

    Article  CAS  Google Scholar 

  31. Esfahani A, Ehsani M, Mizani M, Mohammadi A (2020) The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 157:743–751

    Article  CAS  Google Scholar 

  32. Ngo TMP, Dang TMQ, Tran TX, Rachtanapun P (2018) Effects of zinc oxide nanoparticles on the properties of pectin/alginate edible films. Int J Polym Sci 2018:1–9

    Article  CAS  Google Scholar 

  33. Rambabu K, Bharath G, Banat F, Show PL, Cocoletzi HH (2019) Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int J Biol Macromol 126:1234–1243

    Article  CAS  Google Scholar 

  34. Abdul-Rahman SM, Abass AF (2021) Preparation of edible films made from chitosan with pomegranate peel extract and study its barrier, mechanical and antioxidant properties. IOP Conf Ser 761(1):012122

    Article  Google Scholar 

  35. Pirsa S, Karimi Sani I, Khodayvandi S (2018) Design and fabrication of starch-nano clay composite films loaded with methyl orange and bromocresol green for determination of spoilage in milk package. Polym Adv Technol 29(11):2750–2758

    Article  CAS  Google Scholar 

  36. Mousavian D, Nafchi AM, Nouri L, Abedinia A (2021) Physicomechanical properties, release kinetics, and antimicrobial activity of activated low-density polyethylene and orientated polypropylene films by Thyme essential oil active component. J Food Meas Charact 15(1):883–891

    Article  Google Scholar 

  37. Qu L, Chen G, Dong S, Huo Y, Yin Z, Li S, Chen Y (2019) Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind Crops Prod 130:450–458

    Article  CAS  Google Scholar 

  38. Assis RQ, Lopes SM, Costa TMH, Flôres SH, de Oliveira Rios A (2017) Active biodegradable cassava starch films incorporated lycopene nanocapsules. Ind Crops Prod 109:818–827

    Article  CAS  Google Scholar 

  39. Guine RP, Goncalves F, Lerat C, El Idrissi T, Rodrigo E, Correia PM, Goncalves JC (2018) Extraction of phenolic compounds with antioxidant activity from beetroot (Beta vulgaris L.). Curr Nutr Food Sci 14(4):350–357

    Article  CAS  Google Scholar 

  40. Hari N, Francis S, Nair AGR, Nair AJ (2018) Synthesis, characterization and biological evaluation of chitosan film incorporated with β-Carotene loaded starch nanocrystals. Food Packag Shelf Life 16:69–76

    Article  Google Scholar 

  41. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Coll Surf B 101:430–433

    Article  CAS  Google Scholar 

  42. Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111(3):485–492

    Article  CAS  PubMed  Google Scholar 

  43. Pirsa S (2020) Biodegradable film based on pectin/Nano-clay/methylene blue: structural and physical properties and sensing ability for measurement of vitamin C. Int J Biol Macromol 163:666–675

    Article  CAS  PubMed  Google Scholar 

  44. Shankar S, Teng X, Li G, Rhim JW (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271

    Article  CAS  Google Scholar 

  45. Hejri Z, Seifkordi AA, Ahmadpour A, Zebarjad SM, Maskooki A (2013) Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles. Int J Miner Metall Mater 20(10):1001–1011

    Article  CAS  Google Scholar 

  46. Zhang S, Xia C, Dong Y, Yan Y, Li J, Shi SQ, Cai L (2016) Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Ind Crops Prod 80:207–213

    Article  CAS  Google Scholar 

  47. Tabatabaei RH, Jafari SM, Mirzaei H, Nafchi AM, Dehnad D (2018) Preparation and characterization of nano-SiO2 reinforced gelatin-k-carrageenan biocomposites. Int J Biol Macromol 111:1091–1099

    Article  CAS  Google Scholar 

  48. Liu Z, Lv M, Li F, Zeng M (2016) Development, characterization, and antimicrobial activity of gelatin/Chitosan/ZnO nanoparticle composite films. J Aquat Food Prod Technol 25(7):1056–1063

    Article  CAS  Google Scholar 

  49. Arfat YA, Ahmed J, Hiremath N, Auras R, Joseph A (2017) Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll 62:191–202

    Article  CAS  Google Scholar 

  50. Kumar S, Shukla A, Baul PP, Mitra A, Halder D (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178–184

    Article  Google Scholar 

  51. Chavoshizadeh S, Pirsa S, Mohtarami F (2020) Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packag Shelf Life 24(7):1–11

    Google Scholar 

  52. Balasubramanian R, Kim SS, Lee J (2018) Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: mechanical, thermal and water barrier properties. Int J Biol Macromol 118:561–568

    Article  CAS  PubMed  Google Scholar 

  53. Mishra RK, Datt M, Banthia AK (2008) Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 9(2):395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raul PK, Senapati S, Sahoo AK, Umlong IM, Devi RR, Thakur AJ, Veer V (2014) CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv 4(76):40580–40587

    Article  CAS  Google Scholar 

  55. Wang H, Gong X, Miao Y, Guo X, Liu C, Fan YY, Li W (2019) Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chem 283:397–403

    Article  CAS  PubMed  Google Scholar 

  56. Shankar S, Tanomrod N, Rawdkuen S, Rhim JW (2016) Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 92:842–849

    Article  CAS  PubMed  Google Scholar 

  57. Solano ACV, de Gante CR (2014) Development of biodegradable films based on blue corn flour with potential applications in food packaging. Effects of plasticizers on mechanical, thermal, and microstructural properties of flour films. J Cereal Sci 60(1):60–66

    Article  CAS  Google Scholar 

  58. Cao Y, Chen TT, Wang W, Chen M, Wang HJ (2017) Construction and functional assessment of zein thin film incorporating spindle-like ZnO crystals. RSC Adv 7(4):2180–2185

    Article  CAS  Google Scholar 

  59. Canadanović-Brunet JM, Savatović SS, Cetković GS, Vulić JJ, Djilas SM, Markov SL, Cvetković DD (2011) Antioxidant and antimicrobial activities of beet root pomace extracts. Czech J Food Sci 29(6):575–585

    Article  Google Scholar 

  60. Maddy SA, Raheed QJ, Kalaichelvan PT (2012) Antimicrobial activity of zero-valant iron nanoparticles. Int J Mod Eng Res 2(1):578–581

    Google Scholar 

  61. Lapresta-Fernandez A, Fernandez A, Blasco J (2012) Nanoecotoxicity effects of organisms. Trends Anal Chem 32:40–59

    Article  CAS  Google Scholar 

  62. Siripatrawan U, Harte B (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775

    Article  CAS  Google Scholar 

  63. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2012) Characterization and antimicrobial activity studies of polypropylene flms with carvacrol and thymol for active packaging. J Food Eng 109:513–519

    Article  CAS  Google Scholar 

  64. Bahrami A, Mokarram RR, Khiabani MS, Ghanbarzadeh B, Salehi R (2019) Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. Int J Biol Macromol 129:1103–1112

    Article  CAS  PubMed  Google Scholar 

  65. Ahmed J, Arfat YA, Castro-Aguirre E, Auras R (2016) Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. Int J Biol Macromol 86:885–892

    Article  CAS  PubMed  Google Scholar 

  66. Jayaramudu J, Das K, Sonakshi M, Reddy GSM, Aderibigbe B, Sadiku R, Ray SS (2014) Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. Int J Biol Macromol 64:428–434

    Article  CAS  PubMed  Google Scholar 

  67. Farshchi E, Pirsa S, Roufegarinejad L, Alizadeh M, Rezazad M (2019) Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles. Carbohydr Polym 216:189–196

    Article  CAS  PubMed  Google Scholar 

  68. Dash KK, Ali NA, Das D, Mohanta D (2019) Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int J Biol Macromol 139:449–458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Nouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabahang, Z., Nouri, L. & Nafchi, A.M. Composite Film Based on Whey Protein Isolate/Pectin/CuO Nanoparticles/Betanin Pigments; Investigation of Physicochemical Properties. J Polym Environ 30, 3985–3998 (2022). https://doi.org/10.1007/s10924-022-02481-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02481-7

Keywords

Navigation