Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improving carrier mobility in two-dimensional semiconductors with rippled materials

Matters Arising to this article was published on 22 November 2023

Abstract

Two-dimensional (2D) semiconductors could potentially replace silicon in future electronic devices. However, the low carrier mobility in 2D semiconductors at room temperature, caused by strong phonon scattering, remains a critical challenge. Here we show that lattice distortions can reduce electron–phonon scattering in 2D materials and thus improve the charge carrier mobility. We introduce lattice distortions into 2D molybdenum disulfide (MoS2) using bulged substrates, which create ripples in the 2D material leading to a change in the dielectric constant and a suppressed phonon scattering. A two orders of magnitude enhancement in room-temperature mobility is observed in rippled MoS2, reaching 900 cm2 V−1 s−1, which exceeds the predicted phonon-limited mobility of flat MoS2 of 200–410 cm2 V−1 s−1. We show that our approach can be used to create high-performance room-temperature field-effect transistors and thermoelectric devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Material characterization and phonon DOS in f-MoS2 and r-MoS2.
Fig. 2: Transport mechanism and enhanced dielectric constant and FET performance in r-MoS2.
Fig. 3: Transport measurements of bilayer r-MoS2.
Fig. 4: Thermoelectric properties of mono-, bi- and trilayer r-MoS2 (blue) and f-MoS2 (red) as a function of carrier concentration (n) at 300 K.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  Google Scholar 

  2. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  Google Scholar 

  3. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  Google Scholar 

  4. Aljarb, A. et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19, 1300–1306 (2020).

    Article  Google Scholar 

  5. Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article  Google Scholar 

  6. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  Google Scholar 

  7. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  Google Scholar 

  8. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  9. Chai, J. W. et al. Tuning contact barrier height between metals and MoS2 monolayer through interface engineering. Adv. Mater. Interfaces 4, 1700035 (2017).

  10. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  Google Scholar 

  11. Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  Google Scholar 

  12. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  Google Scholar 

  13. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  Google Scholar 

  14. Lloyd, D. et al. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 16, 5836–5841 (2016).

    Article  Google Scholar 

  15. Hosseini, M., Elahi, M., Pourfath, M. & Esseni, D. Strain-induced modulation of electron mobility in single-layer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se). IEEE Trans. Electron Devices 62, 3192–3198 (2015).

    Article  Google Scholar 

  16. Cheng, L. & Liu, Y. What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides? J. Am. Chem. Soc. 140, 17895–17900 (2018).

    Article  Google Scholar 

  17. Cheng, L., Zhang, C. & Liu, Y. Why two-dimensional semiconductors generally have low electron mobility. Phys. Rev. Lett. 125, 177701 (2020).

    Article  MathSciNet  Google Scholar 

  18. Liu, T. et al. Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223–226 (2019).

    Article  Google Scholar 

  19. Zhuang, X., He, B., Javvaji, B. & Park, H. S. Intrinsic bending flexoelectric constants in two-dimensional materials. Phys. Rev. B 99, 054105 (2019).

    Article  Google Scholar 

  20. He, X., Singh, D. J., Boon-on, P., Lee, M. & Zhang, L. Dielectric behavior as a screen in rational searches for electronic materials: metal pnictide sulfosalts. J. Am. Chem. Soc. 140, 18058–18065 (2018).

    Article  Google Scholar 

  21. Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 2013).

    Google Scholar 

  22. Kumar, A. & Ahluwalia, P. K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B Condens. Matter 419, 66–75 (2013).

    Article  Google Scholar 

  23. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  24. Yu, Z. et al. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27, 1604093 (2017).

    Article  Google Scholar 

  25. Sohier, T., Calandra, M. & Mauri, F. Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: theoretical modeling and first-principles calculations. Phys. Rev. B 94, 085415 (2016).

    Article  Google Scholar 

  26. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    Article  Google Scholar 

  27. Zhang, X. et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).

    Article  Google Scholar 

  28. Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article  Google Scholar 

  29. Jiang, J. W., Park, H. S. & Rabczuk, T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114, 064307 (2013).

    Article  Google Scholar 

  30. Zhang, C., Cheng, L. & Liu, Y. Role of flexural phonons in carrier mobility of two-dimensional semiconductors: free standing vs on substrate. J. Phys. Condens. Matter 33, 234003 (2021).

  31. Yang, F. et al. Gate-tunable polar optical phonon to piezoelectric scattering in few-layer Bi2O2Se for high-performance thermoelectrics. Adv. Mater. 33, 2004786 (2021).

    Article  Google Scholar 

  32. Lundstrom, M. Fundamentals of Carrier Transport (Cambridge Univ. Press, 2000).

  33. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  Google Scholar 

  34. Tracy, L. A. et al. Observation of percolation-induced two-dimensional metal-insulator transition in a Si MOSFET. Phys. Rev. B 79, 235307 (2009).

  35. Wu, J., Chen, Y., Wu, J. & Hippalgaonkar, K. Perspectives on thermoelectricity in layered and 2D materials. Adv. Electron. Mater. 4, 1800248 (2018).

    Article  Google Scholar 

  36. Hippalgaonkar, K. et al. High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B 95, 115407 (2017).

    Article  Google Scholar 

  37. Ng, H. K., Chi, D. & Hippalgaonkar, K. Effect of dimensionality on thermoelectric powerfactor of molybdenum disulfide. J. Appl. Phys. 121, 204303 (2017).

    Article  Google Scholar 

  38. Olson, J. M. Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments. Mater. Sci. Semicond. Process. 5, 51–60 (2002).

    Article  Google Scholar 

  39. Yang, C. & Pham, J. Characteristic study of silicon nitride films deposited by LPCVD and PECVD. Silicon 10, 2561–2567 (2018).

    Article  Google Scholar 

  40. Liu, X. J. et al. Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia. Thin Solid Films 460, 72–77 (2004).

    Article  Google Scholar 

  41. Liu, X.-J., Jin, C.-Y., Zhang, J.-J., Huang, Z.-Y. & Huang, L.-P. Growth rate and surface morphology of silicon nitride thin films by low pressure chemical vapor deposition. J. Inorg. Mater. 19, 379–384 (2004).

  42. Tönnberg, S. Optimisation and Characterisation of LPCVD Silicon Nitride Thin Film Growth. MS Thesis, Chalmers Univ. of Technology (2006).

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

  47. Souza, I., Íñiguez, J. & Vanderbilt, D. First-principles approach to insulators in finite electric fields. Phys. Rev. Lett. 89, 117602 (2002).

  48. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

J.W. acknowledges the SERC Central Research Fund (CRF KIMR211001kSERCRF) and Advanced Manufacturing and Engineering Young Individual Research Grant (AME YIRG grant no. A2084c170). D.C. and J.W. acknowledge National Research Foundation Competitive Research Programs (NRFCRP24-2020-0002). M.Y. acknowledges funding support (project IDs 1-BE47, ZE0C, ZE2F and ZE2X) from The Hong Kong Polytechnic University. K.H. acknowledges funding from the Accelerated Materials Development for Manufacturing Program at the Agency for Science, Technology and Research (A*STAR) via the AME Programmatic Fund under grant no. A1898b0043. D.X. and T.L. acknowledge the Young Scientist project of the MOE Innovation platform. D.X. acknowledges the National Natural Science Foundation (NSF) of China (grant no. 62104041) and Shanghai Sailing Program (grant no. 21YF1402600). T.L. acknowledges the NSF of Shanghai (grant no. 22ZR1405700). We acknowledge the Centre for Advanced 2D Materials and Graphene Research at National University of Singapore, and the National Supercomputing Centre Singapore for providing the computing resources.

Author information

Authors and Affiliations

Authors

Contributions

J.W. conceived the idea of the experiments and design of the project. J.W. and M.Y. supervised the project. H.-K.N. and D.X. prepared the substrates and fabricated the devices. J.W., H.-K.N., D.X., and T.L. performed the electrical transport characterization. M.Y. and K.Y. conducted the first-principles calculations. Data analysis and interpretations were carried out by J.W., M.Y., H.-K.N., A.S., G.H., K.Y., C.-W.Q., K.H. and G.E., with inputs from the other co-authors. H.-K.N., J.W., A.S., M.Y., G.H. and C.-W.Q. initiated the draft with inputs and comments from all the authors. All the authors discussed the results and provided constructive comments on the manuscript.

Corresponding authors

Correspondence to Ming Yang or Jing Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Yuanyue Liu, Tibor Grasser and Won Jong Yoo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Table 1 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, H.K., Xiang, D., Suwardi, A. et al. Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat Electron 5, 489–496 (2022). https://doi.org/10.1038/s41928-022-00777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00777-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing