Skip to main content
Log in

On a Strong Increase in the Amplitude of the Wave Function of a Massive Nonrelativistic Particle Incident on a Crystal (One-Dimensional Approximation)

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

An increase in the amplitude of the wave function of a massive nonrelativistic particle incident on a one-dimensional crystal is studied. Similarly to the case of light propagation in a one-dimensional periodic medium, a perturbation theory is constructed for small deviations in the energy of the incident particle from the boundary of the band gap. Formulas are derived for the wave function of the particle in the crystal and the reflection and transmission coefficients. The general features and differences between the initial equations, the obtained characteristics for the massive particle and the properties of the light field are analyzed in detail. It is found that the main properties of the wave function have the same features as the properties of the light field. Numerical estimates are given for the increase in the amplitude of the wave function of the particle inside the one-dimensional periodic medium with a period that is equal to the lattice constant of palladium. It is shown that, as the energy of the incident particle decreases, the amplitude of the wave function increases significantly, which correlates with the experimentally observed increase in the yield of D–D reactions for low-energy particles compared with the values obtained by extrapolating data from the high-energy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. V. Bagulya, O. D. Dalkarov, M. A. Negodaev, et al., Bull. Lebedev Phys. Inst. 39, 247 (2012).

    Article  Google Scholar 

  2. V. Bagulya, O. D. Dalkarov, M. A. Negodaev, et al., Bull. Lebedev Phys. Inst. 39, 325 (2012).

    Article  Google Scholar 

  3. F. Raiola, P. Migliardi, G. Gyurky, et al., Eur. Phys. J. A 13, 377 (2002).

    Article  CAS  Google Scholar 

  4. F. Raiola, P. Migliardi, L. Gang, et al., Phys. Lett. B 547, 193 (2002).

    Article  CAS  Google Scholar 

  5. A. G. Lipson, A. S. Rusetskii, A. B. Karabut, and G. Miley, J. Exp. Theor. Phys. 100, 1175 (2005).

    Article  CAS  Google Scholar 

  6. H. S. Bosch and G. M. Halle, Nucl. Fusion 32, 611 (1994).

    Article  Google Scholar 

  7. K. Czerski, A. Huke, A. Biller, P. Heide, M. Hoeft, and G. Ruprecht, Europhys. Lett. 54, 449 (2001).

    Article  CAS  Google Scholar 

  8. H. Yuki, J. Kasagi, A. G. Lipson, T. Ohtsuki, T. Baba, T. Noda, B. F. Lyakhov, and N. Asami, JETP Lett. 68, 823 (1998).

    Article  Google Scholar 

  9. O. D. Dalkarov, M. A. Negodaev, A. S. Rusetskii, V. I. Tsechosh, B. F. Lyakhov, E. I. Saunin, A. A. Bolotokov, and I. A. Kudryashov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 272 (2019). https://doi.org/10.1134/S1027451019020241

    Article  CAS  Google Scholar 

  10. B. M. Steinetz, T. L. Benyo, A. Chait, et al., Phys. Rev. C 101, 044610 (2020).

    Article  CAS  Google Scholar 

  11. O. D. Dalkarov, M. A. Negodaev, A. S. Rusetskii, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 220 (2020). https://doi.org/10.1134/S102745102002024X

    Article  CAS  Google Scholar 

  12. A. V. Bagulya, O. D. Dal’karov, M. A. Negodaev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 58 (2017). https://doi.org/10.1134/S1027451017010232

    Article  CAS  Google Scholar 

  13. A. A. Kraiskii and A. V. Kraiskii, “On a possible mechanism for increasing the yield of low-energy nuclear reactions in crystal structures,” in Proceedings of the VI International Conference on Photonics and Information Optics (Moscow Inzh-Fiz. Inst., Moscow, 2017), p. 55.

  14. A. A. Kraiski and A. V. Kraiski, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 333 (2020). https://doi.org/10.1134/S102745102002010X

    Article  CAS  Google Scholar 

  15. A. A. Kraiskii and A. V. Kraiskii, Bull. Lebedev Phys. Inst. 45, 56 (2018).

    Article  Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kraiski.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraiski, A.A., Kraiski, A.V. On a Strong Increase in the Amplitude of the Wave Function of a Massive Nonrelativistic Particle Incident on a Crystal (One-Dimensional Approximation). J. Surf. Investig. 16, 263–272 (2022). https://doi.org/10.1134/S1027451022020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022020124

Keywords:

Navigation