Skip to main content
Log in

Modeling of the Electrical Properties of Self-Assembled Island-Type Films of Polar C60F18 Molecules on Chemically Inactive Surfaces

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The electrical properties of C60F18 fluorofullerene molecules with a high electric dipole moment during their physical adsorption on various surfaces were studied in order to investigate the possibility of creating interfaces with specified physical and chemical characteristics and controlling their properties. Spatial maps of the electrostatic potential and electric field strength of a single molecule were obtained. The distribution of the electrostatic potential of single-layer and multilayer, close-packed and sparse, as well as ordered and disordered ensembles of fluorofullerene molecules C60F18 earlier observed in experiments, and their effect on the substrate were modeled using the density functional theory. The calculations confirmed the experimentally established splitting of the F1s level in an electric field directed along the axis of symmetry of the molecule (linear Stark effect). Based on the nature of the interaction of the adsorbate molecules with the substrate and with each other, the influence of collective electrostatic effects on the monolayer structure and the shift of the core electronic levels, conclusions were drawn about the presence of local electric fields above the island film and in the near-surface region of the substrate, and the film growth process. The results of this study can be used to interpret the electrostatic potential distributions obtained by scanning quantum dot microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. Battaglini, V. Repain, P. Lang, G. Horowitz, and S. Rousset, Langmuir 24, 2042 (2008). https://doi.org/10.1021/la7031994

    Article  CAS  Google Scholar 

  2. L. P. Sukhanov, R. G. Chumakov, A. V. Goryachevskiy, A. M. Lebedev, K. A. Men’shikov, N. Yu. Svechnikov, and V. G. Stankevich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 761 (2018). https://doi.org/10.1134/S1027451018040365

    Article  CAS  Google Scholar 

  3. W. Kohn and L. J. Sham, Phys. Rev. A 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  4. P. C. Rusu and G. Brocks, Phys. Rev. B 74, 073414 (2006). https://doi.org/10.1103/PhysRevB.74.073414

    Article  CAS  Google Scholar 

  5. P. C. Rusu and G. Brocks, J. Phys. Chem. B 110, 22628 (2006). https://doi.org/10.1021/jp0642847

    Article  CAS  Google Scholar 

  6. P. C. Rusu, Doctoral Dissertation (Univ. Twente, Enschede, 2007).

  7. P. C. Rusu, G. Giovannetti, and G. Brocks, J. Phys. Chem. C 111, 14448 (2007). https://doi.org/10.1021/jp073420k

    Article  CAS  Google Scholar 

  8. A. Kokalj, Phys. Rev. B 84, 045418 (2011). https://doi.org/10.1103/PhysRevB.84.045418

    Article  CAS  Google Scholar 

  9. D. A. Egger and E. Zojer, J. Phys. Chem. Lett. 4, 3521 (2013). https://doi.org/10.1021/jz401721r

    Article  CAS  Google Scholar 

  10. G. Rojas, S. Simpson, X. Chen, D. A. Kunkel, J. Nitz, J. Xiao, P. A. Dowben, E. Zurek, and A. Enders, Phys. Chem. Chem. Phys. 14, 4971 (2012). https://doi.org/10.1039/c2cp40254h

    Article  CAS  Google Scholar 

  11. V. de Renzi, R. Rousseau, D. Marchetto, R. Biagi, S. Scandolo, and U. del Pennino, Phys. Rev. Lett. 95, 046804 (2005). https://doi.org/10.1103/PhysRevLett.95.046804

    Article  CAS  Google Scholar 

  12. H. Vázquez, F. Flores, R. Oszwaldowski, J. Ortega, R. Pérez, and A. Kahn, Appl. Surf. Sci. 234, 107 (2004). https://doi.org/10.1016/j.apsusc.2004.05.084

    Article  CAS  Google Scholar 

  13. H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Perez, F. Flores, and A. Kahn, Europhys. Lett. 65, 802 (2004). https://doi.org/10.1209/epl/i2003-10131-2

    Article  CAS  Google Scholar 

  14. I. S. Neretin, K. A. Lyssenko, M. Y. Antipin, and Y. L. Slovokhotov, Russ. Chem. Bull. 51, 754 (2002). https://doi.org/10.1023/A:1016012228913

    Article  CAS  Google Scholar 

  15. I. S. Neretin, K. A. Lyssenko, M. Y. Antipin, Y. L. Slovokhotov, O. V. Boltalina, P. A. Troshin, A. Yu. Lukonin, L. N. Sidorov, and R. Taylor, Angew. Chem., Int. Ed. 39, 3273 (2000). https://doi.org/10.1002/1521-3773(20000915)39:18<3273::AID-ANIE3273>3.0.CO;2-F

    Article  CAS  Google Scholar 

  16. A. Natan, L. Kronik, H. Haick, and R. T. Tung, Adv. Mater. 19, 4103 (2007). https://doi.org/10.1002/adma.200701681

    Article  CAS  Google Scholar 

  17. K. Bairagi, A. Bellec, R. G. Chumakov, K. A. Menshikov, J. Lagoute, C. Chacon, Y. Girard, S. Rousset, V. Repain, A. M. Lebedev, L. P. Sukhanov, N. Yu. Svechnikov, and V. G. Stankevich, Surf. Sci. 641, 248 (2015). https://doi.org/10.1016/j.susc.2015.05.020

    Article  CAS  Google Scholar 

  18. A. V. Goryachevskiy, L. P. Sukhanov, A. M. Lebedev, K. A. Men’shikov, N. Yu. Svechnikov, R. G. Chumakov, and V. G. Stankevich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 934 (2019). https://doi.org/10.1134/S102745101905029X

    Article  CAS  Google Scholar 

  19. Y. Gao, Mater. Sci. Eng., R 68, 39 (2010). https://doi.org/10.1016/j.mser.2010.01.001

  20. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science—An Introduction (Springer, New York, 2003).

    Google Scholar 

  21. C. Wagner, M. F. B. Green, M. Maiworm, P. Leinen, T. Esat, N. Ferri, N. Friedrich, R. Findeisen, A. Tkatchenko, R. Temirov, and F. S. Tautz, Nat. Mater. 18, 853 (2019). https://doi.org/10.1038/s41563-019-0382-8

    Article  CAS  Google Scholar 

  22. M. F. B. Green, C. Wagner, P. Leinen, T. Deilmann, P. Kruger, M. Rohlfing, F. S. Tautz, and R. Temirov, Jpn. J. Appl. Phys. 55, 08NA04 (2016). https://doi.org/10.7567/JJAP.55.08NA04

    Article  CAS  Google Scholar 

  23. C. Wagner, N. Fournier, F. S. Tautz, and R. Temirov, Phys. Rev. Lett. 109, 076102 (2012). https://doi.org/10.1103/PhysRevLett.109.076102

    Article  CAS  Google Scholar 

  24. N. Fournier, C. Wagner, C. Weiss, R. Temirov, and F. S. Tautz, Phys. Rev. B 84, 035435 (2011). https://doi.org/10.1103/PhysRevB.84.035435

    Article  CAS  Google Scholar 

  25. C. Wagner, M. F. Green, P. Leinen, T. Deilmann, P. Krüger, M. Rohlfing, R. Temirov, and F. S. Tautz, Phys. Rev. Lett. 115, 026101 (2015). https://doi.org/10.1103/PhysRevLett.115.026101

    Article  CAS  Google Scholar 

  26. C. Wagner and F. S. Tautz, J. Phys.: Condens. Matter 31, 475901 (2019). https://doi.org/10.1088/1361-648X/ab2d09

    Article  CAS  Google Scholar 

  27. I. G. Kaplan, Intermolecular Interactions: Physical Interpretation, Computer Calculations, and Model Potentials (BINOM, Laboratoriya znanii, Moscow, 2012) [in Russian].

  28. I. V. Goldt, O. V. Boltalina, L. N. Sidorov, E. Kemnitz, and S. I. Troyanov, Solid State Sci. 4, 1395 (2002). https://doi.org/10.1016/S1293-2558(02)00027-4

    Article  CAS  Google Scholar 

  29. Python. https://en.wikipedia.org/wiki/Python_(programming_language).

  30. NumPy. https://numpy.org/.

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02 (Gaussian, Wallingford, 2009).

    Google Scholar 

  32. A. D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  33. A. D. Becke, J. Chem. Phys. 98, 1372 (1993). https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  35. Trilinear Interpolation. https://en.wikipedia.org/wiki/Trilinear_interpolation.

  36. CUDA. https://en.wikipedia.org/wiki/CUDA.

  37. C++. https://en.wikipedia.org/wiki/C%2B%2B.

  38. T. Williams, C. Kelley, J. Campbell, et al., Gnuplot 4.6 Manual (2012).

  39. T. C. Taucher, I. Hehn, O. T. Hofmann, M. Zharnikov, and E. Zojer, J. Phys. Chem. 120, 3428. https://doi.org/10.1021/acs.jpcc.5b12387

  40. T. Abu-Husein, S. Schuster, D. A. Egger, M. Kind, T. Santowski, A. Wiesner, R. Chiechi, E. Zojer, A. Terfort, and M. Zharnikov, Adv. Funct. Mater. 25, 3943 (2015). https://doi.org/10.1002/adfm.201500899

    Article  CAS  Google Scholar 

  41. T. E. Feuchtwang, P. H. Cutler, and N. M. Miskovsky, Phys. Lett. A 99, 167 (1983). https://doi.org/10.1016/0375-9601(83)90969-6

    Article  Google Scholar 

  42. J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985). https://doi.org/10.1103/PhysRevB.31.805

    Article  CAS  Google Scholar 

  43. J. J. Barton, Phys. Rev. Lett. 67, 3106 (1991). https://doi.org/10.1103/PhysRevLett.67.3106

    Article  CAS  Google Scholar 

  44. T. Gog, P. M. Len, G. Materlik, D. Bahr, C. S. Fadley, and C. Sanchez-Hanke, Phys. Rev. Lett. 76, 3132 (1996). https://doi.org/10.1103/PhysRevLett.76.3132

    Article  CAS  Google Scholar 

  45. V. V. Lider, Phys.—Usp. 58, 365 (2015). https://doi.org/10.3367/ufne.0185.201504d.0393

    Article  CAS  Google Scholar 

  46. M. Tegze and G. Faigel, Nature 380, 49 (1996). https://doi.org/10.1038/380049a0

    Article  CAS  Google Scholar 

  47. A. Tamai, A. P. Seitsonen, T. Greber, and J. Osterwalder, Phys. Rev. B 74, 085407 (2006). https://doi.org/10.1103/PhysRevB.74.085407

    Article  CAS  Google Scholar 

  48. R. Fasel, P. Aebi, R. G. Agostino, D. Naumovic, J. Osterwalder, A. Santaniello, and L. Schlapbach, Phys. Rev. Lett. 76, 4733 (1996). https://doi.org/10.1103/PhysRevLett.76.4733

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out with the financial support of the Russian Foundation for Basic Research (project no. 20-33-90 246).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Goryachevskiy or L. P. Sukhanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryachevskiy, A.V., Sukhanov, L.P., Lebedev, A.M. et al. Modeling of the Electrical Properties of Self-Assembled Island-Type Films of Polar C60F18 Molecules on Chemically Inactive Surfaces. J. Surf. Investig. 16, 233–246 (2022). https://doi.org/10.1134/S1027451022030107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030107

Keywords:

Navigation