Skip to main content
Log in

Cooperative and Local Features of the Spin Gap Formation in the Kondo Insulators YbB12 and CeFe2Al10

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The formation of the excitation spectra of the ground state for Kondo insulators like YbB12, CeFe2Al10 has been studied and analyzed in terms of correspondence between cooperative and local effects. Experimental results concerning different types of substitutions for the rare earth and d-metal sublattices are discussed on the basis of model calculations. It is shown how the transformation from Kondo insulator to heavy fermions occurs in the f-electron excitation spectra of CeFe2Al10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. S. Riseborough, Adv. Phys. 49, 257 (2000). https://doi.org/10.1080/000187300243345

    Article  CAS  Google Scholar 

  2. P. Coleman, in Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmüller and S. Parkin (Wiley, New York, 2007), Vol. 1. p. 95.

    Google Scholar 

  3. J. Moreno and P. Coleman, Phys. Rev. Lett. 84, 342 (2000). https://doi.org/10.1103/PhysRevLett.84.342

    Article  CAS  Google Scholar 

  4. K. Hanzawa, J. Phys. Soc. Jpn. 71, 1481 (2002). https://doi.org/10.1143/JPSJ.71.1481

    Article  CAS  Google Scholar 

  5. G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. 16, 155 (1992). https://doi.org/10.1016/S1570-002X(08)80014-6

    Article  CAS  Google Scholar 

  6. D. T. Adroja, K. A. McEwen, J.-G. Park, et al., J. Optoelectron. Adv. Mater. 10, 1719 (2008).

    Google Scholar 

  7. W. T. Fuhrman, J. Leiner, P. Nikolić, et al., Phys. Rev. Lett. 114, 036401 (2015). https://doi.org/10.1103/PhysRevLett.114.036401

    Article  CAS  Google Scholar 

  8. Y. H. Matsuda, Y.i Kakita, and F. Iga, Crystals 10, 26 (2020). https://doi.org/10.3390/cryst10010026

    Article  CAS  Google Scholar 

  9. A. Akbari and P. Thalmeier, J. Kor. Phys. Soc. 62, 1418 (2013). https://doi.org/10.3938/jkps.62.1418

    Article  CAS  Google Scholar 

  10. S. H. Liu, Phys. Rev. B 63, 115108 (2001). https://doi.org/10.1103/PhysRevB.63.115108

    Article  CAS  Google Scholar 

  11. A. F. Barabanov and L. A. Maksimov, Phys. Lett. A 373, 1787 (2009). https://doi.org/10.1016/j.physleta.2009.02.076

    Article  CAS  Google Scholar 

  12. P. A. Alekseev, E. V. Nefedova, U. Staub, et al., Phys. Rev. B 63, 064411 (2001). https://doi.org/10.1103/PhysRevB.63.064411

    Article  CAS  Google Scholar 

  13. P. A. Alekseev, J.-M. Mignot, K. S. Nemkovski, et al., J. Phys.: Condens. Matter 16, 2631 (2004). https://doi.org/10.1088/0953-8984/16/15/015

    Article  CAS  Google Scholar 

  14. K. S. Nemkovski, P. A. Alekseev, J.-M. Mignot, and V. N. Lazukov, Phys. Solid State 52, 878 (2010). https://doi.org/10.1134/S1063783410050112

    Article  CAS  Google Scholar 

  15. P. A. Alekseev, K. S. Nemkovski, J.-M. Mignot, et al., Phys. Rev. B 89, 115121 (2014). https://doi.org/10.1103/PHYSREVB.89.115121

    Article  Google Scholar 

  16. W. T. Fuhrman, J. R. Chamorro, P. A. Alekseev, et al., Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-04007-z

    Article  CAS  Google Scholar 

  17. P. A. Alekseev, J.-M. Mignot, D. T. Adroja, et al., Phys. Rev. B 102, 024438 (2020). https://doi.org/10.1103/PhysRevB.102.024438

    Article  CAS  Google Scholar 

  18. N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, et al., JETP Lett. 89, 256 (2009). https://doi.org/10.1134/S0021364009050099

    Article  CAS  Google Scholar 

  19. N. E. Sluchanko, A. P. Dudka, O. N. Khrykina, et al., JETP Lett. 108, 691 (2018). https://doi.org/10.1134/S0370274X18220095

    Article  CAS  Google Scholar 

  20. A. Akbari, P. Thalmeier, and P. Fulde, Phys. Rev. Lett. 102, 106402 (2009). https://doi.org/10.1103/PhysRevLett.102.106402

    Article  CAS  Google Scholar 

  21. P. S. Riseborough, Phys. Rev. B 45, 13984 (1992). https://doi.org/10.1103/physrevb.45.13984

    Article  CAS  Google Scholar 

  22. K. S. Nemkovski, J.-M. Mignot, P. A. Alekseev, et al., Phys. Rev. Lett. 99, 137204 (2007). https://doi.org/10.1103/PhysRevLett.99.137204

    Article  CAS  Google Scholar 

  23. P. S. Savchenkov, E. S. Clementyev, P. A. Alekseev, and V. N. Lazukov, J. Magn. Magn. Mater. 489, 165413 (2019). https://doi.org/10.1016/J.JMMM.2019.165413

    Article  CAS  Google Scholar 

  24. D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).

    Article  CAS  Google Scholar 

  25. E. Holland-Moritz and G. H. Lander, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and L. Eyring (Elsevier, Amsterdam, 1994), Vol. 19. p. 1.

    Google Scholar 

  26. P. A. Alekseev, J.-M. Mignot, P. S. Savchenkov, and V. N. Lazukov, JETP Lett. 103, 636 (2016). https://doi.org/10.7868/S0370274X16100064

    Article  CAS  Google Scholar 

  27. P. A. Alekseev, W. Buehrer, V. N. Lazukov, et al., Phys. B (Amsterdam, Neth.) 217, 241 (1996).

  28. H. Tanida, M. Nakamura, M. Sera, T. Nishioka, and M. Matsumura, Phys. Rev. B 92, 235154 (2015). https://doi.org/10.1103/PhysRevB.92.235154

    Article  CAS  Google Scholar 

  29. D. D. Khalyavin, D. T. Adroja, A. Bhattacharyya, et al., Phys. Rev. B 89, 064422 (2014). https://doi.org/10.1103/PhysRevB.89.064422

    Article  CAS  Google Scholar 

  30. D. D. Khalyavin, D. T. Adroja, P. Manuel, et al., Phys. Rev. B 88, 060403(R) (2013). https://doi.org/10.1103/PhysRevB.88.060403

  31. V. N. Lazukov, N. Marcano, N. N. Tiden, et al., Phys. B (Amsterdam, Neth.) 378–380, 760 (2006). https://doi.org/10.1016/j.physb.2006.01.484

  32. E. S. Clementyev, P. A. Alekseev, V. N. Lazukov, et al., Phys. Rev. B 61, 6189 (2000). https://doi.org/10.1103/PhysRevB.61.6189

    Article  CAS  Google Scholar 

  33. V. N. Lazukov, P. A. Alekseev, E. S. Clementyev, et al., Europhys. Lett. 33, 141 (1996).

    Article  CAS  Google Scholar 

  34. V. N. Lazukov, P. A. Alekseev, E. S. Klement’ev, et al., J. Exp. Theor. Phys. 86, 1731 (1998).

    Article  Google Scholar 

  35. V. N. Lazukov, E. V. Nefeodova, V. V. Sikolenko, et al., Appl. Phys. A 74, 559 (2002). https://doi.org/10.1007/s003390201528

    Article  CAS  Google Scholar 

  36. E. Holland-Moritz, J. Magn. Magn. Mater. 38, 253 (1983). https://doi.org/10.1007/s003390201528E

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to I.P. Sadikov and J.-M. Mignot for useful and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, P.A., Lazukov, V.N. & Savchenkov, P.S. Cooperative and Local Features of the Spin Gap Formation in the Kondo Insulators YbB12 and CeFe2Al10. J. Surf. Investig. 16, 303–311 (2022). https://doi.org/10.1134/S102745102203020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102203020X

Keywords:

Navigation