Skip to main content
Log in

Magnetization Reversal Dynamics of a Heusler Alloy Exchange-Coupled with a Synthetic Antiferromagnet

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This work shows the dynamics of the process of the magnetization reversal of a thin film of the Heusler alloy Co2FeSi in the stack of a multilayer structure with a magnetic tunneling junction that has a tunnel magnetoresistance (TMR) of 149%. Using the method of a magneto-optical indicator film, the process of magnetization reversal of this layer is visualized. Anisotropy of the magnetization reversal of the Co2FeSi layer under the action of in-plane magnetic fields is found. The behavior of the magnetization reversal under the action of fields applied perpendicular to the easy axis of the induced anisotropy indicates smooth, coherent rotation of the magnetic moment from the easy axis towards the applied field. As the external field is directed along the easy axis, a complex domain structure appears and its asymmetric nucleation and movement are observed. The domains propagate and move depending on the direction of the field, when the external field is directed along the easy axis. For example, when the field is antiparallel to the direction of the easy axis of the free layer, domains nucleate at the edges of the film and propagate inward. The magnetization of the free layer becomes antiparallel to the magnetization of the upper layer of the synthetic antiferromagnetic film (IrMn/CoFe/Ru/CoFeB). When the field is switched to the opposite direction, domains originate inside the film and propagate to its edges to transfer the magnetization of the free layer to a parallel position to the reference layer. These results are important for improving the quality of Heusler-alloy-based magnetic tunneling junction devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser, and H. J. Lin, Appl. Phys. Lett. 88, 032503 (2006). http://doi.org./10.1063/1.2166205

    Article  Google Scholar 

  2. S. Trudel, O. Gaier, J. Hamrle, and B. Hillebrands, J. Phys. D: Appl. Phys. 43, 193001 (2010). http://doi.org./10.1088/0022-3727/43/19/193001

    Article  Google Scholar 

  3. C. Sterwerf, S. Paul, B. Khodadadi, M. Meinert, J.‑M. Schmalhorst, M. Buchmeuer, C. K. A. Mewes, T. Mewes, and G. Reiss, J. Appl. Phys. 120, 083904 (2016). http://doi.org./10.1063/1.4960705

    Article  Google Scholar 

  4. O. Gaier, J. Hamrle, S. Trudel, B. Hillebrands, H. Schneider, and G. Jakob, J. Phys. D: Appl. Phys. 42, 232001 (2009). http://doi.org./10.1088/0022-3727/42/23/232001

    Article  Google Scholar 

  5. T. Kubota, J. Hamrle, Y. Sakuraba, O. Gaier, M. Oogane, A. Sakuma, B. Hillebrands, K. Takanashi, and Y. Ando, J. Appl. Phys. 106, 113907 (2009). https://doi.org/10.1063/1.3265428

    Article  CAS  Google Scholar 

  6. J. Hamrle, S. Blomeier, O. Gaier, B. Hillebrands, H. Schneider, G. Jakob, K. Postava, and C. Felser, J. Phys. D: Appl. Phys. 40, 1563 (2007). https://doi.org/10.1088/0022-3727/40/6/S09

    Article  CAS  Google Scholar 

  7. P. J. Chen, G. Feng, and R. D. Shull, IEEE Trans. Magn. 49, 4379 (2013). http://doi.org./10.1109/TMAG.2013.2244584

    Article  CAS  Google Scholar 

  8. L. H. Bennett, R. D. McMichael, L. J. Swartzendruber, S. Hua, D. S. Lashmore, A. J. Shapiro, V. S. Gornakov, L. M. Dedukh, and V. I. Nikitenko, Appl. Phys. Lett. 66, 888 (1995). http://doi.org./10.1063/1.113421

    Article  CAS  Google Scholar 

  9. L. A. Dorosinskii, M. V. Indenbom, V. I. Nikitenko, Y. A. Ossip’yan, A. A. Polyanskii, and V. K. Vlasko-Vlasov, Phys. C (Amsterdam, Neth.) 203, 149 (1992). http://doi.org./10.1016/0921-4534(92)90521-D

  10. D. B. Gopman, Y. P. Kabanov, J. Cui, C. S. Lynch, and R. D. Shull, Appl. Phys. Lett. 109, 082407 (2016). http://doi.org./10.1063/1.4961881

    Article  Google Scholar 

  11. M. Staruch, S. P. Bennett, B. R. Matis, J. W. Baldwin, K. Bussmann, D. B. Gopman, Y. Kabanov, J. W. Lau, R. D. Shull, E. Langlois, C. Arrington, J. R. Pillars, and P. Finkel, Phys. Rev. Appl. 11, 034028 (2019). http://doi.org./10.1103/PhysRevApplied.11.034028

    Article  CAS  Google Scholar 

  12. M. Staruch, D. B. Gopman, Y. L. Iunin, R. D. Shull, S. F. Cheng, K. Bussmann, and P. Finkel, Sci. Rep. 6, 37429 (2016). http://doi.org./10.1038/srep37429

    Article  CAS  Google Scholar 

  13. V. S. Gornakov, Yu. P. Kabanov, O. A. Tikhomirov, V. I. Nikitenko, S. V. Urazhdin, F. Y. Yang, C. L. Chien, A. J. Shapiro, and R. D. Shull, Phys. Rev. B 73, 184428 (2006). http://doi.org./10.1103/PhysRevB.73.184428

    Article  Google Scholar 

  14. V. I. Nikitenko, V. S. Gornakov, L. M. Dedukh, Yu. P. Kabanov, A. F. Khapikov, A. J. Shapiro, R. D. Shull, A. Chaiken, and R. P. Michel, Phys. Rev. B 57, R8111 (1998). http://doi.org./10.1103/PhysRevB.57.R8111

    Article  CAS  Google Scholar 

  15. V. I. Nikitenko, V. S. Gornakov, A. J. Shapiro, R. D. Shull, Kai. Liu, S. M. Zhou, and C. L. Chien, Phys. Rev. Lett. 84, 765 (2000). http://doi.org./10.1103/PhysRevLett.84.765

    Article  CAS  Google Scholar 

  16. T. R. Gao, D. Z. Yang, S. M. Zhou, R. Chantrell, P. Asselin, J. Du, and X. S. Wu, Phys. Rev. Lett. 99, 057201 (2007). http://doi.org./10.1103/PhysRevLett.99.057201

    Article  CAS  Google Scholar 

  17. W. Skowroński, T. Stobiecki, J. Wrona, K. Rott, A. Thomas, G. Reiss, and S. van Dijken, J. Appl. Phys. 107, 093917 (2010). https://doi.org/10.1063/1.3387992

    Article  CAS  Google Scholar 

  18. F. A. Shah, V. K. Sankar, P. Li, G. Csaba, E. Chen, and G. H. Bernstein, J. Appl. Phys. 115, 17B902 (2014). http://doi.org./10.1063/1.4863935

  19. M. Gottwald, M. Hehn, D. Lacour, T. Hauet, F. Montaigne, S. Mangin, P. Fischer, M.-Y. Im, and A. Berger, Phys. Rev. B 85, 064403 (2012). http://doi.org./10.1103/PhysRevB.85.064403

    Article  Google Scholar 

  20. D. B. Gopman, D. Bedau, S. Mangin, C. H. Lambert, E. E. Fullerton, J. A. Katine, and A. D. Kent, Appl. Phys. Lett. 100, 062404 (2012). http://doi.org./10.1063/1.3681792

    Article  Google Scholar 

  21. Yu. P. Kabanov, R. D. Shull, C. Zheng, P. W. T. Pong, and D. B. Gopman, Appl. Surf. Sci. 536, 147672 (2021). http://doi.org./10.1016/j.apsusc.2020.147672

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Kabanov.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships which could influence the work and the publication of this report.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabanov, Y.P., Shull, R.D., Zheng, C. et al. Magnetization Reversal Dynamics of a Heusler Alloy Exchange-Coupled with a Synthetic Antiferromagnet. J. Surf. Investig. 16, 201–206 (2022). https://doi.org/10.1134/S1027451022030120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030120

Keywords:

Navigation