Skip to main content
Log in

Effect of Ion-Beam Treatment on the Structure and Properties of Titanium-Oxide Films

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of the condensation temperature and ion-beam treatment alternating with high-frequency magnetron sputtering on the structure and optical properties of thin titanium-oxide films is studied. The films have homogeneous compositions and granular structures; ion-beam treatment changes the grain shape from elongated to rounded. The X-ray diffraction studies show that the phase composition of the films is represented by two modifications of titanium oxide: rutile and anatase. It is found that the increase in the condensation temperature and the intensity of ion-beam treatment influences the film phase composition and their refractive indices. At a low condensation temperature, the dominant phase is rutile; as the condensation temperature increases, the anatase phase forms. An increase in the current density of ion-beam treatment leads to a decrease in the anatase fraction. The decrease in the refractive index of the titanium-oxide films with an increase in the condensation temperature is related to the formation of the anatase phase. Ion-beam treatment also decreases the band-gap width from 3.40 to 3.30 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. M. Kalygina, I. M. Egorova, I. A. Prudaev, and O. P. Tolbanov, Semiconductors 50, 1156 (2016). https://doi.org/10.1134/S1063782616090104

    Article  CAS  Google Scholar 

  2. A. Fujishima and K. Honda, Nature 238 (5358), 37 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  3. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chem. Rev. 114, 9919 (2014). https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  4. V. N. Parmon, in Photocatalytic Conversion of Solar Energy: Heterogeneous, Homogeneous, and Molecular Structurally Organized Systems. Collection of Scientific Works, Ed. by K. I. Zamaraev and V. N. Parmon (Nauka, Novosibirsk, 1991), p. 7.

    Google Scholar 

  5. T. Ochiai and A. Fujishima, J. Photochem. Photobiol. C 13, 247 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.07.001

    Article  CAS  Google Scholar 

  6. A. P. Belyaev, A. A. Malygin, V. V. Antipov, and V. P. Rubets, Phys. Solid State 51, 495 (2009). https://doi.org/10.1134/S1063783409030093

    Article  CAS  Google Scholar 

  7. P. N. Dave and S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011). https://doi.org/10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  8. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chem. Rev. 114, 9919 (2014). https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  9. M. I. Vinogradov and Yu. P. Maishev, Vacuum Processes and Equipment for Ion and Electron Beam Technology (Mashinostroenie, Moscow, 1989) [in Russian].

    Google Scholar 

  10. Yu. P. Maishev, Elektron. Prom-st’, No. 5, 15 (1990).

  11. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, Radiography, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  12. J. C. Manifacier, J. Gasiot, and J. P. Fillard, J. Phys. E 9, 1002 (1976). https://doi.org/10.1088/0022-3735/9/11/032

    Article  CAS  Google Scholar 

  13. R. Swanepoel, J. Phys. E 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  CAS  Google Scholar 

  14. A. Ganjoo and R. Golovchak, J. Optoelectr. Adv. Mater. 10, 1328 (2008). http://www.researchgate.net/publication/265989649.

    CAS  Google Scholar 

  15. E. F. Venger, A. V. Mel’chuk, and A. V. Stronskii, Photostimulated Processes in Chalcogenide Glassy Semiconductors and Their Practical Application (Akademperiodika, Kyiv, 2007) [in Russian].

    Google Scholar 

  16. S. A. Kukushkin and V. V. Slezov, Dispersed Systems on the Surface of Solids: Mechanisms of Thin Film Formation (Evolutionary Approach) (Nauka, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  17. A. V. Tumarkin, I. T. Serenkov, and V. I. Sakharov, Phys. Solid State 52, 2561 (2010). https://doi.org/10.1134/S106378341012019X

    Article  CAS  Google Scholar 

  18. S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 86, 1370 (1999). https://doi.org/10.1063/1.370896

    Article  CAS  Google Scholar 

  19. A. V. Tumarkin, I. T. Serenkov, V. I. Sakharov, V. V. Afrosimov, and A. A. Odinets, Phys. Solid State 58, 364 (2016). https://doi.org/10.1134/S106378341602030X

    Article  CAS  Google Scholar 

  20. V. A. Tikhonov, S. V. Lanovetskii, and V. E. Tkacheva, Vestn. Tekhnol. Univ. 19 (9), 148 (2016).

    Google Scholar 

  21. J. M. G. Amores, V. S. Escribano, and G. Busca, J. Mater. Chem. 5, 1245 (1995). https://doi.org/10.1039/JM9950501245

    Article  Google Scholar 

  22. U. Diebold, Surf. Sci. Rep. 48 (5–8), 53 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0

    Article  CAS  Google Scholar 

  23. B. O’ Regan and M. Gratzel, Nature 353 (6346), 737 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  24. H. Zhang and J. F. Banfield, J. Mater. Chem. 8, 2073 (1998). https://doi.org/10.1039/a802619j

    Article  CAS  Google Scholar 

  25. A. A. Gribb and J. F. Banfield, Am. Mineral. 82, 717 (1997). https://doi.org/10.2138/am-1997-7-809

    Article  CAS  Google Scholar 

  26. Yu. V. Gerasimenko, V. A. Logacheva, and A. M. Khoviv, Kondens. Sredy Mezhfaznye Granitsy 12 (2), 113 (2010). http://www.kcmf.vsu.ru/resources/t_12_2_2010_003.pdf.

  27. D. I. Bilenko, A. A. Sagaidachnyi, V. V. Galushka, and V. P. Polyanskaya, Tech. Phys. 55, 1478 (2010). https://doi.org/10.1134/S1063784210100130

    Article  CAS  Google Scholar 

  28. D. Hanaor and C. Sorrell, J. Mater. Sci. 46, 855 (2011). https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  29. V. A. Logacheva, A. N. Lukin, N. N. Afonin, and O. V. Serbin, Opt. Spectrosc. 126, 674 (2019). https://doi.org/10.1134/S0030400X19060158

    Article  CAS  Google Scholar 

  30. M. Landmann, E. Rauls, and W. G. Schmidt, J. Phys.: Condens. Matter 24, 195503 (2012). https://doi.org/10.1088/0953-8984/24/19/195503

    Article  CAS  Google Scholar 

  31. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991). https://doi.org/10.1021/j100155a009

    Article  CAS  Google Scholar 

  32. H.-S. Lee, C.-S. Woo, B.-K. Youn, S.-Y. Kim, S.-T. Oh, Y.-E. Sung, and H.-I. Lee, Top. Catal. 35, 255 (2005). https://doi.org/10.1007/s11244-005-3832-2

    Article  CAS  Google Scholar 

  33. K. M. Reddy, S. V. Manorama, and A. R. Reddy, Mater. Chem. Phys. 78 (1), 239 (2003). https://doi.org/10.1016/S0254-0584(02)00343-7

    Article  Google Scholar 

  34. V. M. Khoroshikh and V. A. Belous, FIP 7, 223 (2009). http://dspace.nbuv.gov.ua/bitstream/handle/123456789/ 7978/07-Khoroshikh.pdf?sequence=1.

  35. J. Kowalski, A. Sobczyk-Guzenda, H. Szymanowski, and M. Gazicki-Lipman, J. Achiev. Mater. Manufact. Eng. 37, 298 (2009). http://jamme.acmsse.h2.pl/papers_vol37_2/37212.pdfhttp://jamme.acmsse.h2.pl/papers_vol37_2/37212.pdf.

    Google Scholar 

  36. A. I. Goev, V. G. Kryuchkov, V. V. Potelov, B. N. Senik, and A. K. Gerasyuk, Prikl. Fiz. 1, 152 (2007). https://www.elibrary.ru/download/elibrary_12880432_ 96154458.pdf.

  37. D. B. Zolotukhin, V. A. Burdovitsin, A. V. Tyun’kov, Yu. G. Yushkov, E. M. Oks, D. A. Golosov, and S. M. Zavadskii, Usp. Prikl. Fiz. 5, 442 (2017). http://advance.orion-ir.ru/UPF-17/5/UPF-5-5-442.pdf.

  38. A. A. Goncharov, A. N. Dobrovol’skii, E. G. Kostin, I. S. Petrik, and E. K. Frolova, Tech. Phys. 59, 884 (2014). https://doi.org/10.1134/S1063784214060097

    Article  CAS  Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krylov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabova, A.K., Krylov, P.N., Zakirova, R.M. et al. Effect of Ion-Beam Treatment on the Structure and Properties of Titanium-Oxide Films. J. Surf. Investig. 16, 226–232 (2022). https://doi.org/10.1134/S1027451022030090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030090

Keywords:

Navigation