Skip to main content
Log in

Stability of Cobalt(II) Complexes with Glycinate Ion as a Function of Water–Dimethyl Sulfoxide Solvent Composition

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The stability constants cobalt(II) glycylglycinate complexes in a water–DMSO solvent of variable composition have been determined by the potentiometric titration method at 298 K and a solution ionic strength of 0.1 M against the background of sodium perchlorate. It has been established that an increase in the content of DMSO in solution leads to an increase in the stability of cobalt(II) glycylglycinate complexes. Using literature data, we calculated the change in the Gibbs energy of the Co2+ ion transfer from water to its mixtures with DMSO and estimated the contributions of the transsolvation of the reagents in a water–DMSO solvent to the change in the Gibbs energy of the reaction of cobalt(II) glycylglycinate formation. It has been shown that a change in the Gibbs energy of transsolvation of a metal ion in a water–DMSO solution counteracts an increase in the equilibrium constant of the complex formation reaction, while a change in the solvation state of the ligand and the complex species, on the contrary, contributes to an increase in the stability of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Berlyand, Yu. Ershov, and A. Knizhnik, General Chemistry. Biophysical Chemistry. Chemistry of Biogenic Elements (Vyssh. shkola, Moscow, 2007) [in Russian].

  2. C. Di Natale, I. De Benedictis, A. De Benedictis, and D. Marasco, Antibiotics 9, 337 (2020). https://doi.org/10.3390/antibiotics9060337

    Article  CAS  PubMed Central  Google Scholar 

  3. X. Sun, R. A. Sarteshnizi, R. T. Boachie, et al., Foods 9, 1402 (2020). https://doi.org/10.3390/foods9101402

    Article  CAS  PubMed Central  Google Scholar 

  4. E. I. Solomon, R. K. Szilagyi, S. D. B. Georg, and L. Basumallick, Chem. Rev. 104, 419 (2004). https://doi.org/10.1021/cr0206317

    Article  CAS  PubMed  Google Scholar 

  5. F. Errante, P. Ledwon, R. Latajka, et al., Front. Chem. 8, 1 (2020). https://doi.org/10.3389/fchem.2020.572923

    Article  CAS  Google Scholar 

  6. F. S. Vilhena, J. Felcman, B. Szpoganicz, and F. S. Miranda, J. Mol. Struct. 1127, 226 (2017). https://doi.org/10.1016/j.molstruc.2016.07.073

    Article  CAS  Google Scholar 

  7. R. N. Patel, N. Singh, R. P. Shrivastava, et al., J. Chem. Sci. 114, 115 (2002). https://doi.org/10.1007/BF02704304

    Article  CAS  Google Scholar 

  8. A. E. Martell and R. M. Smith, in Critical Stability Constants, vol. 5 (Plenum Press, New York, 1982). https://doi.org/10.1007/978-1-4615-6761-5

  9. L. A. Kochergina and O. M. Drobilova, Izv. Vuzov, Khim. Khim. Tekhnol. 54, 26 (2011).

    CAS  Google Scholar 

  10. G. G. Gorboletova, S. A. Bychkova, and K. O. Frolova, Russ. J. Phys. Chem. A 94, 1549 (2020). https://doi.org/10.1134/S0036024420080099

    Article  CAS  Google Scholar 

  11. S. Timari, C. Kallay, K. Osz, et al., Dalton Trans. 11, 1962 (2009). https://doi.org/10.1039/B816498C

    Article  Google Scholar 

  12. G. G. Gorboletova and A. A. Metlyn, Russ. J. Phys. Chem. A 89, 1540 (2015). https://doi.org/10.1134/S0036024415090125

    Article  CAS  Google Scholar 

  13. S. A. Bychkova, G. G. Gorboletova, and K. O. Frolova, Izv. Vuzov, Khim. Khim. Tekhnol. 63, 21 (2020). https://doi.org/10.6060/ivkkt.20206302.6020

    Article  CAS  Google Scholar 

  14. E. G. Kuznetsova, V. A. Ryzhikova, L. A. Salomatina, and V. I. Sevastianov, Russ. J. Transplant. Artific. Organs 18, 152 (2016). https://doi.org/10.15825/1995-1191-2016-2-152-162

    Article  Google Scholar 

  15. P. Ledwon, F. Errante, A. M. Papini, et al., Chem. Biodiversity 18, e2000833 (2021). https://doi.org/10.1002/cbdv.202000833

    Article  CAS  Google Scholar 

  16. A. R. Tkacheva, V. V. Sharutin, O. K. Sharutina, and P. A. Slepukhin, Russ. J. Gen. Chem. 89, 1816 (2019). https://doi.org/10.1134/S1070363219090147

    Article  CAS  Google Scholar 

  17. H. M. El-Shaffey, E. J. Gross, Y. D. Hall, and J. Ohata, J. Am. Chem. Soc. 143, 12974 (2021). https://doi.org/10.1021/jacs.1c06092

    Article  CAS  PubMed  Google Scholar 

  18. E. A. Malinina, V. V. Avdeeva, S. E. Korolenko, et al., Russ. J. Inorg. Chem. 65, 1343 (2020). https://doi.org/10.1134/S0036023620090119

    Article  CAS  Google Scholar 

  19. E. M. Kuvshinova, M. A. Bykova, I. A. Vershinina, et al., Russ. J. Gen. Chem. 89, 736 (2019). https://doi.org/10.1134/S1070363219040169

    Article  CAS  Google Scholar 

  20. J. L. Monger, D. Razinkov, R. Bjornsson, and S. G. Suman, Molecules 26, 5169 (2021). https://doi.org/10.3390/molecules26175169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. A. Isaeva, V. A. Sharnin, K. V. Grazhdan, and K. A. Kipyatkov, Russ. J. Phys. Chem. A 95, 1350 (2021). https://doi.org/10.1134/S0036024421060169

    Article  CAS  Google Scholar 

  22. V. A. Isaeva, A. S. Molchanov, M. V. Shishkin, et al., Russ. J. Inorg. Chem. 65, 535 (2020). https://doi.org/10.1134/S003602360040075

    Article  CAS  Google Scholar 

  23. A. Boraei and I. Ahmed, Synth. React. Inorg. Met. Org. Chem. 32, 981 (2002). https://doi.org/10.1081/SIM-120005616

    Article  CAS  Google Scholar 

  24. V. A. Borodin, E. V. Kozlovskii, and V. P. Vasil’ev, Russ. J. Inorg. Chem. 31, 10 (1986).

    CAS  Google Scholar 

  25. V. V. Naumov, V. A. Isaeva, V. A. Sharnin, and E. N. Kuzina, Russ. J. Phys. Chem. A 85, 1752 (2011). https://doi.org/10.1134/S003602441110013X

    Article  CAS  Google Scholar 

  26. E. Bosch, G. Fonrodona, C. Rafols, and M. Roses, Anal. Chim. Acta 349, 367 (1997). https://doi.org/10.1016/S0003-2670(97)00191-8

    Article  CAS  Google Scholar 

  27. J. A. Bolzan and A. J. Arvia, Electrochim. Acta 7, 589 (1962). https://doi.org/10.1016/0013-4686(62)85009-9

    Article  Google Scholar 

  28. D. M. Palade and Yu. N. Gannova, Russ. J. Coord. Chem. 29, 106 (2003).

    Article  CAS  Google Scholar 

  29. W. R. Harris and A. E. Martell, J. Am. Chem. Soc. 99, 6746 (1977). https://doi.org/10.1021/ja00462a044

    Article  CAS  PubMed  Google Scholar 

  30. J. Biester and P. Ruoff, J. Am. Chem. Soc. 81, 6517 (1959). https://doi.org/10.1021/ja01533a047

    Article  CAS  Google Scholar 

  31. N. V. Petrov, V. S. Nabokov, B. V. Zhadanov, et al., Zh. Fiz. Khim. 50, 2208 (1976).

    CAS  Google Scholar 

  32. A. V. Nishchenkov, V. A. Sharnin, V. A. Shormanov, and G. A. Krestov, Russ. J. Coord. Chem. 16, 1264 (1990).

    CAS  Google Scholar 

  33. V. A. Isaeva, V. A. Sharnin, V. A. Shormanov, and I. V. Shcherbina, Russ. J. Coord. Chem. 24, 149 (1998).

    Google Scholar 

  34. V. A. Isaeva, V. A. Sharnin, V. A. Shormanov, and S. F. Ledenkov, Russ. J. Phys. Chem. 70, 1320 (1996).

    CAS  Google Scholar 

  35. Yu. Yu. Fadeev, V. A. Sharnin, and V. A. Shormanov, Russ. J. Inorg. Chem. 42, 1220 (1997).

    Google Scholar 

  36. Y. Shimazaki, M. Takani, and O. Yamauchi, Dalton Trans. 38, 7854 (2009). https://doi.org/10.1039/B905871K

    Article  Google Scholar 

  37. Inorganic Biochemistry, Ed. by G. L. Eichhorn (Elsevier Scientific Pub. Co., Amsterdam, New York, 1973).

    Google Scholar 

  38. S. P. Datta and B. R. Rabin, Trans. Faraday Soc. 52, 1117 (1956).

    Article  CAS  Google Scholar 

  39. A. Miller, A. Matera-Witkiewicz, A. Mikolaiczyk, et al., J. Mol. Sci. 22, 6971 (2021). https://doi.org/10.3390/ijms22136971

    Article  CAS  Google Scholar 

  40. B. B. Koleva, S. Zareva, T. Kolev, M. Spiteller, J. Coord. Chem. 61, 3534 (2008). https://doi.org/10.1080/00958970802108817

    Article  CAS  Google Scholar 

  41. E. Constantino, A. Rimola, M. Sodupe, and L. Rodriguez-Santiago, J. Phys. Chem. A 113, 8883 (2009). https://doi.org/10.1021/jp901179t

    Article  CAS  PubMed  Google Scholar 

  42. V. A. Sharnin, Izv. Vuzov, Khim. Khim. Tekhnol. 48, 44 (2005).

    CAS  Google Scholar 

  43. V. V. Naumov, V. A. Isaeva, E. N. Kuzina, and V. A. Sharnin, Russ. J. Phys. Chem. A 86, 1773 (2012). https://doi.org/10.1134/S0036024412120175

    Article  CAS  Google Scholar 

  44. A. O. Gorbunov, N. A. Tsyrul’nikov, A. A. Tikhomirova, et al., Russ. J. Gen. Chem. 86, 771 (2016). https://doi.org/10.1134/S1070363216040022

    Article  CAS  Google Scholar 

  45. G. V. Roshkovskii and R. A. Ovchinnikova, Zh. Prikl. Khim. 55, 1858 (1982).

    CAS  Google Scholar 

  46. D. M. Muir, P. Singh, C. C. Kenna, and G. Senanayake, Electrochim. Acta 34, 1573 (1989). https://doi.org/10.1016/0013-4686(89)87043-4

    Article  CAS  Google Scholar 

  47. C. Kalidas, G. Hefter, and Y. Marcus, Chem. Rev. 100, 819 (2000). https://doi.org/10.1021/cr980144k

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using equipment of the Shared Facility Center at Ivanovo State University of Chemistry and Technology.

Funding

The study was supported by the Ministry and Education and Science (agreement no. 075-15-2021-671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Isaeva.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaeva, V.A., Molchanov, A.S., Shishkin, M.V. et al. Stability of Cobalt(II) Complexes with Glycinate Ion as a Function of Water–Dimethyl Sulfoxide Solvent Composition. Russ. J. Inorg. Chem. 67, 699–704 (2022). https://doi.org/10.1134/S0036023622050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622050084

Keywords:

Navigation