Skip to main content
Log in

Influence of γ Radiation on the Crystal Structure of BiFeO3

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—Perfect single crystals of BiFeO3 have been grown by the solution-melt method. Chemical analysis has confirmed their cationic and anionic stoichiometry. Precision X-ray diffraction analysis has provided more accurate structural data for BiFeO3 before and after γ-irradiation with a dose of 1.0 × 106 rad. It has been established that the indicated structural characteristics of the BiFeO3 crystal are in satisfactory agreement with the available literature data, although in our case a significant increase in their accuracy is observed (the R values (F > 2σ(F)) range from 0.017 to 0.023). For the first time, difference maps of the residual electron density have been constructed and possible positions of lone pairs of electrons for Bi3+ cations have been determined, which is important for establishing the structural conditionality of the ferroelectric properties in BiFeO3. The effect of lone electron pairs on the specific features of the structural framework has been studied. The characteristic features of cationic polyhedra in the structure have been analyzed, including the calculation of their distortions and the valence state of cations. It has been shown that the structure of BiFeO3 is resistant to irradiation with a given dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Liu and X. Yang, Ferroelectrics 507, 69 (2017). https://doi.org/10.1080/00150193.2017.1283171

    Article  CAS  Google Scholar 

  2. S. A. Ivanov, Adv. Funct. Mater. 2, 163 (2012). https://doi.org/10.1016/B978-0-44-453681-5.00007-8

    Article  CAS  Google Scholar 

  3. M. M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015). https://doi.org/10.1080/10408436.2014.992584

  4. B. Wang, in Mechanics of Advanced Functional Materials, Advanced Topics in Science and Technology in China (Springer, Berlin, 2013). https://doi.org/10.1080/00018730902920554

  5. K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009). https://doi.org/10.1080/10408436.2014.992584

  6. S. N. Achary, O. D. Jayakumar, and A. K. Tyagi, in Functional Materials (Elsevier, 2012). https://doi.org/10.1016/B978-0-12-385142-0.00004-0

  7. T. M. Palstra and G. R. Blake, in Encyclopedia of Materials: Science and Technology (Elsevier, 2006). https://doi.org/10.1016/B0-08-043152-6/02128-8

  8. M. Čebela, D. Zagorac, K. Batalović, et al., Ceramics Int. B 43, 1256 (2017). https://doi.org/10.1016/j.ceramint.2016.10.074

    Article  CAS  Google Scholar 

  9. M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nature Rev.: Mater. 1, 1 (2016).

    Google Scholar 

  10. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009). https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  11. A. N. Kalinkin and V. M. Skorikov, Russ. J. Inorg. Chem. 55, 1794 (2010).

    Article  CAS  Google Scholar 

  12. J. F. Scott, Nat. Mater. 6, 256 (2007). https://doi.org/10.1038/nmat1868

    Article  CAS  PubMed  Google Scholar 

  13. T. Kimura, T. Goto, H. Shintani, et al., Nature 426, 55 (2003). https://doi.org/10.1038/nature02018

    Article  CAS  PubMed  Google Scholar 

  14. Th. Lottermoser, Th. Lonkai, U. Amann, et al., Nature 430, 541 (2004). https://doi.org/10.1038/nature02728

    Article  CAS  PubMed  Google Scholar 

  15. P. Ravindran, R. Vidya, A. Kjekshus, et al., Phys. Rev. 74, 224412 (2006). https://doi.org/10.1103/PhysRevB.74.224412

    Article  CAS  Google Scholar 

  16. N. A. Hill, J. Phys. Chem. 104, 6694 (2000). https://doi.org/10.1021/jp000114x

    Article  CAS  Google Scholar 

  17. R. Mahesh and P. V. Reddy, Mater. Chem. Phys. 232, 460 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.012

    Article  CAS  Google Scholar 

  18. J. B. Neaton, C. Ederer, U. V. Waghmare, et al., Phys. Rev. 71, 014113 (2005). https://doi.org/10.1103/PhysRevB.71.014113

    Article  CAS  Google Scholar 

  19. L. E. Fuentes-Cobas, J. A. Matutes-Aquino, and M. E. Fuentes-Montero, Handb. Magn. Mater. 19, 129 (2011). https://doi.org/10.1016/B978-0-444-53780-5.00003-X

    Article  CAS  Google Scholar 

  20. N. Wang, X. Luo, L. Han, et al., Nano-Micro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6

    Article  CAS  Google Scholar 

  21. F. Kubel and H. Schmid, Acta Crystallogr., Sect. B 46, 698 (1990). https://doi.org/10.1016/0022-0248(93)90485-F

    Article  Google Scholar 

  22. P. Fischer, M. Polomska, I. Sosnowska, et al., J. Phys. C: Solid State Phys. 13, 1931 (1980). https://doi.org/10.1088/0022-3719/13/10/012

    Article  CAS  Google Scholar 

  23. R. Palai, R. S. Katiyar, H. Schmid, et al., Phys. Rev. B 77, 014110 (2008). https://doi.org/10.1103/PhysRevB.77.014110

    Article  CAS  Google Scholar 

  24. D. C. Arnold, K. S. Knight, G. Catalan, et al., Adv. Funct. Mater. 20, 2116 (2010). https://doi.org/10.1002/adfm.201000118

    Article  CAS  Google Scholar 

  25. R. Haumont, J. Kreisel, P. Bouvier, et al., Phys. Rev. 73, 132101 (2006). https://doi.org/10.1103/PhysRevB.73.132101

    Article  CAS  Google Scholar 

  26. S. M. Selbach, T. Tybell, M.-A. Einarsrud, et al., Adv. Mater. 20, 3692 (2008). https://doi.org/10.1002/adma.200800218

    Article  CAS  Google Scholar 

  27. I. A. Kornev, S. Lisenkov, R. Haumont, et al., Phys. Rev. Lett. 99, 227602 (2007). https://doi.org/10.1103/PhysRevLett.97.157601

    Article  CAS  PubMed  Google Scholar 

  28. R. Haumont, I. A. Kornev, S. Lisenkov, et al., Phys. Rev. B 78, 134108 (2008). https://doi.org/10.1103/PhysRevB.78.134108

    Article  CAS  Google Scholar 

  29. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001). https://doi.org/10.1021/CM010090M

    Article  CAS  Google Scholar 

  30. M. K. Yaakob, M. F. M. Taib, M. S. M. Deni, et al., Ferroelectrics 155, 134 (2014). https://doi.org/10.1080/10584587.2014.905306

    Article  CAS  Google Scholar 

  31. P. Royen and K. Swars, Angew. Chem. 24, 779 (1957).

    Article  Google Scholar 

  32. M. S. Bernardo, T. Jardiel, M. Peiteado, et al., J. Eur. Ceram. Soc. 31, 3047 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.03.018

    Article  CAS  Google Scholar 

  33. K. C. Verma, Synthesis and Characterization of Multiferroic BiFeO 3 for Data Storage (2020). https://doi.org/10.5772/intechopen.94049

  34. H. Koizumi, T. Niizekki, and T. Ikeda, Jpn. J. Appl. Phys. 3, 495 (1964).

    Article  CAS  Google Scholar 

  35. E. I. Speranskaya, V. M. Skorikov, E. Ya. Rud’, et al., Izv. AN SSSR. Ser. Khim. 5, 905 (1965).

    Google Scholar 

  36. M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, Russ. J. Gen. Chem. 73, 1676 (2003).

    Article  CAS  Google Scholar 

  37. V. K. Il’in, Zh. Neorg. Khim. 21, 1645 (1976).

    Google Scholar 

  38. T. T. Carvalho and P. B. Tavares, Mater. Lett. 62, 3984 (2008). https://doi.org/10.1016/j.matlet.2008.05.051

    Article  CAS  Google Scholar 

  39. A. M. Glazer, Acta Crystallogr., Sect. B 28, 3384 (1972). https://doi.org/10.1107/S0567740872007976

    Article  CAS  Google Scholar 

  40. D. M. Rakov, V. A. Murashov, A. A. Bush, et al., Kristallografiya 33, 445 (1988).

    CAS  Google Scholar 

  41. Z. V. Gabbasova, M. D. Kuz’min, A. K. Zvezdin, et al., Phys. Lett. A 158, 491 (1991). https://doi.org/10.1016/0375-9601(91)90467-M

    Article  CAS  Google Scholar 

  42. APEX 3, Bruker AXS Inc.: Madison, WI, 2014.

  43. G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  44. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  45. T. Balic Zunic and I. Vickovic, J. Appl. Crystallogr. 29, 305 (1996). https://doi.org/10.1107/S0021889895015081

    Article  CAS  Google Scholar 

  46. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  47. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  48. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  49. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  50. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  51. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  52. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  53. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter. 21, 084204 (2009).

    CAS  Google Scholar 

  54. V. A. Murashov, D. N. Rakov, A. A. Bush, et al., Ferromagnetic Substances (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  55. J. M. Moreau, C. Michel, R. Gerson, et al., Phys. Chem. Solids 32, 1315 (1971). https://doi.org/10.1016/S0022-3697(71)80189-0

    Article  CAS  Google Scholar 

  56. Ja. Dhahri, M. Boudard, S. Zemni, et al., J. Solid State Chem. 181, 802 (2008). https://doi.org/10.1016/j.jssc.2008.01.024

    Article  CAS  Google Scholar 

  57. S. A. Ivanov, P. Nordblad, R. Tellgren, et al., Solid State Sci. 10, 1875 (2008). https://doi.org/10.1016/j.solidstatesciences.2008.04.002

    Article  CAS  Google Scholar 

  58. A. Reyes, C. de la Vega, Ma. E. Fuentes, et al., J. Eur. Ceram. Soc. 27, 3709 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.034

    Article  CAS  Google Scholar 

  59. K. Fujii, H. Kato, K. Omoto, et al., Phys. Chem. Chem. Phys. 15, 6779 (2013). https://doi.org/10.1039/C3CP50236H

    Article  CAS  PubMed  Google Scholar 

  60. R. J. Gillespie, Molecular Geometry (Van Nostrand Reinhold, London, 1972).

    Google Scholar 

  61. S. Andersson and A. Aström, Solid State Chemistry, Proc. 5th Material Research Symposium, NMS special publication 364 (1972).

  62. S. F. Matar and J. Galy, Prog. Solid State Chem. 43, 82 (2015). https://doi.org/10.1016/j.progsolidstchem.2015.05.001

    Article  CAS  Google Scholar 

  63. N. A. Spaldin, MRS Bull. 42, 385 (2017). https://doi.org/10.1557/mrs.2017.86

    Article  Google Scholar 

  64. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990). https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  65. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon Press, Oxford, 1990).

    Google Scholar 

  66. A. I. Stash, E. O. Terekhova, S. A. Ivanov, and V. G. Tsirelson, Acta Crystallogr., Sect. B 77, 728 (2021). https://doi.org/10.1107/S2052520621006892

    Article  CAS  Google Scholar 

  67. N. Brese and M. O’Keeffe, Acta Crystallogr., Sect. B 47, 192 (1991). https://doi.org/10.1107/S0108768190011041

    Article  Google Scholar 

  68. I. D. Brown, Structure and Bonding in Crystals, vol. 2 (Academic Press, New York, 1981).

    Google Scholar 

  69. N. W. Thomas and A. Beitollahi, Acta Crystallogr., Sect. B 50, 549 (1994). https://doi.org/10.1107/S0108768194002764

    Article  Google Scholar 

  70. M. Avdeev, E. N. Caspi, and S. Yakovlev, Acta Crystallogr., Sect. B 63, 363 (2007). https://doi.org/10.1107/S0108768107001140

    Article  CAS  PubMed  Google Scholar 

  71. D. Orobengoa, C. Capillas, M. I. Aroyo, et al., J. Appl. Crystallogr. 42, 820 (2009). https://doi.org/10.1107/S0021889809028064

    Article  CAS  Google Scholar 

  72. J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Acta Crystallogr., Sect. A 66, 558 (2010). https://doi.org/10.1107/S0108767310016247

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction studies and theoretical calculations were performed using equipment of Institute of Organoelement Compounds, RAS, and supported by the Ministry of Science and Higher Education of the Russian Federation.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-03-00337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stash.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.A., Stash, A.I., Bush, A.A. et al. Influence of γ Radiation on the Crystal Structure of BiFeO3. Russ. J. Inorg. Chem. 67, 588–597 (2022). https://doi.org/10.1134/S0036023622050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622050096

Keywords:

Navigation