Skip to main content
Log in

Effect of Thermal Aging for up to 22 Thousand Hours on the Structural and Phase State of Ferritic–Martensitic Steels EK181 and ChS139

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of structural studies of ferritic–martensitic steels EK181 (Fe–12Cr–W–V–Ta–B–C) and ChS139 (Fe–12Cr–Ni–Mo–W–Nb–V–B–N–C) after aging at temperatures of 450, 550, 650, and 700°C for a period of 1000–22 000 h are presented. Optical and electron microscopy are used in the study. The following common trends are revealed for both steels: aging for up to 19 000 h at 450 and 550°C is characterized by a low rate of decomposition of the supersaturated solid solution and by the preservation of the structural parameters of the studied steels at the initial level; aging at 650 and 700°C initiates, starting from an exposure time of 1000 h, the softening processes accompanied by the formation of a subgrain structure and coagulation of carbides. The precipitation of the Fe2(Mo, W) Laves phase after aging at a temperature of 650°C is a distinctive feature of the structure of steel ChS139 compared to steel EK181.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. Odette and S. Zinkle, Structural Alloys for Nuclear Energy Applications (Elsevier, Amsterdam, 2019).

    Google Scholar 

  2. R. L. Klueh and A. T. Nelson, “Ferritic/martensitic steels for next-generation reactors,” J. Nuclear Mater. 371, 37–52 (2007).

    Article  CAS  Google Scholar 

  3. M. V. Leont’eva-Smirnova, A. N. Agafonov, G. N. Ermolaev, A. G. Ioltukhovskii, E. M. Mozhanov, L. I. Reviznikov, V. V. Tsvelev, V. M. Chernov, T. M. Bulanova, V. N. Golovanov, Z. O. Ostrovskii, V. K. Shamardin, A. I. Blokhin, M. B. Ivanov, E. V. Kozlov, Yu. R. Kolobov, and B. K. Kardashev, “Microstructure and mechanical properties of low-activated ferritic-martensitic steel EK-181 (RUSFER-EK-181),” Perspektivnye Materialy, No. 6, 40–52 (2006).

    Google Scholar 

  4. N. S. Nikolaeva, M. V. Leont’eva-Smirnova, E. M. Mozhanov, T. A. Churyumova, P. V. Kotov, E. V. Tsvetkova, A. V. Mitroshenkov, and K. V. Prokhorenkov, “Optimization of technology for heat treatment of pipes made of ferritic-martensitic steels EK181, ChS139,” VANT. Ser.: Materialovedenie i Novye Materialy, No. 2, 45–58 (2013).

    Google Scholar 

  5. V. V. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova, and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, No. 5, 494–506 (2017).

    Article  CAS  Google Scholar 

  6. V. M. Chernov, M. V. Leont’eva-Smirnova, E. M. Mozhanov, N. S. Nikolaeva, A. N. Tyumentsev, N. A. Polekhina, I. Yu. Litovchenko, and E. G. Astafurova, “Thermal stability of the microstructure of 12% chromium ferritic–martensitic steels after long-term aging at high temperatures,” Tech. Phys. 61, 209–214 (2016).

    Article  CAS  Google Scholar 

  7. X. Xiao, G. Liu, B. Hu, J. Wang, and W. Ma, “Microstructure stability of V and Ta microalloyed 12% Cr reduced activation ferrite/martensite steel during long-term aging at 650°C,” J. Mater. Sci. Technol. 31, No. 3, 311–319 (2015).

    Article  CAS  Google Scholar 

  8. X. Hu, L. Huang, W. Yan, W. Wang, W. Sha, Y. Shan, and K. Yan, “Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging,” Mater. Sci. Eng., A 586, 253–258 (2013).

  9. H. Ghassemi-Armaki, R. P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, “Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels,” Mater. Lett. 63, 2423–2425 (2009).

    Article  CAS  Google Scholar 

  10. K. Shiba, H. Tanigawa, T. Hirose, H. Sakasegawa, and S. Jitsukawa, “Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system,” Fusion Eng. Des. 86, 2895–2899 (2011).

    Article  CAS  Google Scholar 

  11. P. Hu, W. Yan, W. Sha, W. Wang, Y. Shan, and K. Yan, “Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep,” J. Mater. Sci. Technol. 27, No. 4, 344–351 (2011).

    Article  CAS  Google Scholar 

  12. Y. Xu, Y. Nie, M. Wang, W. Li, and X. Jin, “The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging,” Acta Mater. 131, 110–122 (2017).

    Article  CAS  Google Scholar 

  13. K. A. Lanskaya, High-Chromium Heat Resistant Steels (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nikolaeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, N.S., Leont’eva-Smirnova, M.V. & Mozhanov, E.M. Effect of Thermal Aging for up to 22 Thousand Hours on the Structural and Phase State of Ferritic–Martensitic Steels EK181 and ChS139. Phys. Metals Metallogr. 123, 489–499 (2022). https://doi.org/10.1134/S0031918X22050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22050118

Keywords:

Navigation