Skip to main content
Log in

Structure and Properties of Al–4.5Mg–0.15Zr Compositions Alloyed with Er, Y, and Yb

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure and properties of the Al–4.5Mg–0.15Zr compositions additionally alloyed with Er, Y, and Yb are studied. During low-temperature annealing of the alloys, the precipitates of 3–5 nm in size with the L12 structure are formed. The recrystallization of cold-rolled sheets of the studied alloys starts at a temperature of ~300°С, when the hardness substantially decreases as compared to that of the rolled alloys, and the structure is almost completely recrystallized. During heating to 550°С, the stable recrystallized structure with a grain size of 11–13 µm remains in the alloys with Er and Yb, whereas, in the alloy with Y, the coarse-grained structure with an average grain size of 40 ± 7 µm is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).

    Article  CAS  Google Scholar 

  2. O. Izumi and D. Oelschlägel, “Structural investigation of precipitation in an aluminum alloy containing 1.1 weight percent zirconium,” Z. Met. 60, 845–851 (1969).

    CAS  Google Scholar 

  3. E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al–Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).

    Article  CAS  Google Scholar 

  4. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (2007), ISBN 9780080453705.

    Book  Google Scholar 

  5. C. Fuller, J. Murray, and D. Seidman, “Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al(ScZr) precipitates,” Acta Mater. 53, 5401–5413 (2005).

    Article  CAS  Google Scholar 

  6. A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018).

    Article  CAS  Google Scholar 

  7. Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S. V. Divinski, and G. Wilde, “Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation,” Acta Mater. 124, 210–224 (2017).

    Article  CAS  Google Scholar 

  8. Y. Sun, Y. Luo, Q. Pan, B. Liu, L. Long, W. Wang, J. Ye, Z. Huang, and S. Xiang, “Effect of Sc content on microstructure and properties of Al–Zn–Mg–Cu–Zr alloy,” Mater. Today Commun. 26, 101899 (2021).

    Article  CAS  Google Scholar 

  9. A. G. Mochugovskiy, A. V. Mikhaylovskaya, N. Y. Taba-chkova, and V. K. Portnoy, “The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy,” Mater. Sci. Eng., A 744, 195–205 (2019).

    Article  CAS  Google Scholar 

  10. G. M. Novotny and A. J. Ardell, “Precipitation of Al3Sc in binary Al–Sc alloys,” Mater. Sci. Eng., A 318, 144–154 (2001).

    Article  Google Scholar 

  11. E. Clouet, “Excess solvent in precipitates,” Nat. Mater. 17, 1060–1061 (2018).

    Article  CAS  Google Scholar 

  12. A. Tolley, V. Radmilovic, and U. Dahmen, “Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys,” Scr. Mater. 52, 621–625 (2005).

    Article  CAS  Google Scholar 

  13. K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for developing castable, creep-resistant aluminum-based alloys—A review,” Z. Metallkunde 97, 246–265 (2006).

    Article  CAS  Google Scholar 

  14. C. B. Fuller, D. N. Seidman, and D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures,” Acta Mater. 51, 4803–4814 (2003).

    Article  CAS  Google Scholar 

  15. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, “Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys,” Scr. Mater. 51, 333–337 (2004).

    Article  CAS  Google Scholar 

  16. N. A. Belov, A. N. Alabin, D. G. Eskin, and V. V. Istomin-Kastrovskii, “Optimization of hardening of Al–Zr–Sc cast alloys,” J. Mater. Sci. 41, 5890–5899 (2006).

    Article  CAS  Google Scholar 

  17. N. A. Belov and A. N. Alabin, “Promising aluminum alloys with zirconium and scandium additions,” Non-Ferrous Met. 2, 99 (2007).

    Google Scholar 

  18. K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging,” Acta Mater. 58, 5184–5195 (2010).

    Article  CAS  Google Scholar 

  19. L. L. Rokhlin, N. R. Bochvar, and N. P. Leonova, “Study of decomposition of oversaturated solid solution in Al–Sc–Zr alloys at different ratio of scandium and zirconium,” Inorg. Mater. 2, 517–520 (2011).

    Article  Google Scholar 

  20. K. Deane, S. L. Kampe, D. Swenson, and P. G. Sanders, “Precipitate evolution and strengthening in supersaturated rapidly solidified Al–Sc–Zr alloys,” Metall. Mater. Trans. A 48, 2030–2039 (2017).

    Article  CAS  Google Scholar 

  21. S. M. Amer, Yu. R. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).

    Article  CAS  Google Scholar 

  22. H. Li, Z. Gao, H. Yin, H. Jiang, X. Su, and J. Bin, “Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum,” Scr. Mater. 68, 59–62 (2013).

    Article  CAS  Google Scholar 

  23. A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).

    Article  CAS  Google Scholar 

  24. S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).

    Article  CAS  Google Scholar 

  25. Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).

    Article  CAS  Google Scholar 

  26. R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).

    Article  CAS  Google Scholar 

  27. Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).

    Article  CAS  Google Scholar 

  28. A. V. Pozdniakov, R. Y. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).

    Article  CAS  Google Scholar 

  29. A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).

    Article  CAS  Google Scholar 

  30. R. Y. Barkov, A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Loginova, A. S. Prosviryakov, and A. V. Pozdniakov, “Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al–Er–Yb–Sc alloys with good electrical conductivity,” J. Alloys Compd. 855, 157367 (2021).

    Article  CAS  Google Scholar 

  31. R. Yu. Barkov, O. A. Yakovtseva, O. I. Mamzurina, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. V. Mikhailovskaya, and A. V. Pozdniakov, “Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy,” Fiz. Met. Metalloved. 121, 604–609 (2020).

    CAS  Google Scholar 

  32. M. E. van Dalen, T. Gyger, D. C. Dunand, and D. N. Seidman, “Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys,” Acta Mater. 59, 7615–7626 (2011).

    Article  CAS  Google Scholar 

  33. N. Q. Vo, D. Bayansan, A. Sanaty-Zadeh, E. H. Ramos, and D. C. Dunand, “Effect of Yb microadditions on creep resistance of a dilute Al–Er–Sc–Zr alloy,” Mater. 4, 65–69 (2018).

    CAS  Google Scholar 

  34. G. Peng, K. Chen, H. Fang, and S. Chen, “A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy,” Mater. Sci. Eng., A 535, 311–315 (2012).

    Article  CAS  Google Scholar 

  35. S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al–Zr alloys,” J. Alloys Compd. 599, 65–70 (2014).

    Article  CAS  Google Scholar 

  36. A. V. Pozdniakov, V. Yarasu, R. Y. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, P. 116–119 (2017).

  37. L. Z. He, X. H. Li, X. T. Liu, X. J. Wang, H. T. Zhang, and J. Z. Cui, “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A 527, 7510–7518 (2010).

    Article  CAS  Google Scholar 

  38. X. Zhang, F. Mei, H. Zhang, S. Wang, C. Fang, and H. Hao, “Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloys,” Mater. Sci. Eng., A 552, 230–235 (2012).

    Article  CAS  Google Scholar 

  39. R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).

    Article  CAS  Google Scholar 

  40. K. Knipling, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008).

    Article  CAS  Google Scholar 

  41. M. F. Ashby and L. M. Brown, “Diffraction contrast from spherically symmetrical coherency strains,” Philos. Mag. A. J. Theor. Exp. Appl. Phys. 8, No. 91, 1083–1103 (1963).

    Google Scholar 

  42. I. S. Golovin, A. V. Mikhaylovskaya, and H.-R. Sinning, “Role of the β-phase in grain boundary and dislocation anelasticity in binary Al–Mg alloys,” J. Alloys Compd. 577, 622–632 (2013).

    Article  CAS  Google Scholar 

  43. A. G. Mochugovskiy and A. V. Mikhaylovskaya, “Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys,” Mater. Lett. 275 (2020).

  44. A. G. Mochugovskiy, A. V. Mikhaylovskaya, M. Y. Zadorognyy, and I. S. Golovin, “Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy,” J. Alloys Compd. 856, 157455 (2021).

    Article  CAS  Google Scholar 

  45. H. Tanaka, Y. Nagai, Y. Oguri, and H. Yoshida, “Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling,” Mater. Trans. 48, 2008–2013 (2007).

    Article  CAS  Google Scholar 

  46. W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, “Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions,” Scr. Mater. 70, 43–46 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 20-33-70170\19. The study was performed using equipment available in the Center of Collective Access for Materials Science and Metallurgy, which was supported by the Ministry of Science and Higher Education of the Russian Federation (no. 075-15-2021-696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Barkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochugovskiy, A.G., Barkov, R.Y., Mikhaylovskaya, A.V. et al. Structure and Properties of Al–4.5Mg–0.15Zr Compositions Alloyed with Er, Y, and Yb. Phys. Metals Metallogr. 123, 466–473 (2022). https://doi.org/10.1134/S0031918X22050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22050088

Keywords:

Navigation