Skip to main content
Log in

Bio-Based Plastic Based on Ozonated Cassava Starch Produced by Extrusion

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Green methods of modification, such as ozone, can bring new functionalities to starch. In this study, starch-based plastics were produced by extrusion, using cassava starch ozonated with a gas flow of 1 L min−1 at a concentration of 41 mg O3 L−1 resulting in doses of 78.9 and 145.3 mg O3/g starch. Pre-mixes (starch, glycerol, and water) were processed in a co-rotating twin-screw extruder. The main results showed that ozonated sheet produced with the treatment of 78.9 mg O3/g starch resulted in an increase in Young Modulus by 43% and a decrease in hydrophilicity by 37% in comparison to the native one. Conversely, treatment with 145.3 mg O3/g starch did not increase the bio-based plastic mechanical properties or surface characteristics, showing a specific behavior tendency between ozonation and extrusion processes. The ozonation of starch showed to be an alternative for producing by extrusion bio-based plastics with enhanced properties, by selecting adequate processing conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Area (m2)

E :

Young’s modulus (MPa)

p :

Pressure (kPa)

RC :

Relative crystallinity

t :

Time (h)

TS :

Tensile strength (MPa)

WVP :

Water vapor permeability (g mm/m2 day kPa)

x :

Thickness (mm)

Y :

Opacity (%)

b :

Black standard

w :

White standard

ε:

Elongation at break (%)

References

  1. Zhu F, Starch MC (2015) Carbohydr Polym 122:456–480. https://doi.org/10.1016/j.carbpol.2014.10.063

    Article  CAS  PubMed  Google Scholar 

  2. Siqueira L, Arias CILF, Maniglia BC, Tadini CC (2021) Starch-based biodegradable plastics: methods of production, challenges and future perspectives. Curr Opin Food Sci 38:122–130. https://doi.org/10.1016/j.cofs.2020.10.020

    Article  CAS  Google Scholar 

  3. Zhang S-D, Zhang Y-R, Zhu J, Wang X-L, Yang K-K, Wang Y-Z (2007) Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch-Stärke 59:258–268. https://doi.org/10.1002/star.200600598

    Article  CAS  Google Scholar 

  4. Zhang S-D, Zhang Y-R, Wang X-L, Wang Y-Z (2009) High carbonyl content oxidized starch prepared by hydrogen peroxide and its thermoplastic application. Starch-Stärke. https://doi.org/10.1002/star.200900130

    Article  Google Scholar 

  5. Maniglia BC, Pataro G, Ferrari G, Augusto PED, Le-Bail P, Le-Bail A (2021) Pulsed electric fields (PEF) treatment to enhance starch 3D printing application: effect on structure, properties, and functionality of wheat and cassava starches. Innov Food Sci Emerg Technol 68:102602. https://doi.org/10.1016/j.ifset.2021.102602

    Article  Google Scholar 

  6. La Fuente CIA, de Souza AT, Tadini CC, Augusto PED (2019) Ozonation of cassava starch to produce biodegradable films. Int J Biol Macromol 141:713–720. https://doi.org/10.1016/j.ijbiomac.2019.09.028

    Article  CAS  PubMed  Google Scholar 

  7. La Fuente CIA, de Souza AT, Tadini CC, Augusto PED (2021) A new ozonated cassava film with the addition of cellulose nanofibres: production and characterization of mechanical, barrier and functional properties. J Polym Environ. https://doi.org/10.1007/s10924-020-02013-1

    Article  Google Scholar 

  8. La Fuente CIA, Castanha N, Maniglia BC, Tadini CC, Augusto PED (2020) Biodegradable films produced from ozone-modified potato starch. J Packag Technol Res. https://doi.org/10.1007/s41783-020-00082-0

    Article  Google Scholar 

  9. Bouvier J-M, Campanella OH (2014) Extrusion processing technology. Wiley, Hoboken

    Book  Google Scholar 

  10. Kazemzadeh M (2012) Introduction to extrusion technology. In: Maskan M, Altan A (eds) Advances in food extrusion technology, 1st edn. CRC Press, USA, pp 1–22

    Google Scholar 

  11. Gonzáles-Seligra F, Guz P, Ochoa-Yepes L, Goyanes O (2017) Influence of extrusion process conditions on starch film morphology. LWT Food Sci Technol 84:520–528

    Article  Google Scholar 

  12. Ochoa-Yepes O, Di Giogio L, Goyanes S, Mauri A, Famá L (2019) Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydr Polym 208:221–231. https://doi.org/10.1016/j.carbpol.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  13. Lima DC, Castanha N, Maniglia BC, Matta Junior MD, La Fuente CIA, Augusto PED (2020) Ozone processing of cassava starch. Ozone Sci Eng 9512:1–18. https://doi.org/10.1080/01919512.2020.1756218

    Article  CAS  Google Scholar 

  14. Vedove TMARD, Maniglia BC, Tadini CC (2021) Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. J Food Eng 289:110274. https://doi.org/10.1016/j.jfoodeng.2020.110274

    Article  CAS  Google Scholar 

  15. ASTM (2018) Standard test method for tensile properties of thin plastic sheeting. https://doi.org/10.1520/D0882-18

  16. ASTM  (2013) Standard test methods for water vapor transmission of materials E96/E96M, Annu. B. ASTM Stand. 1:1–10. https://doi.org/10.1520/E0096

  17. ASTM, ASTM D7334-08 (2013) Standard practice for surface wettability of coatings, substrates and pigments by advancing contact angle measurement: active standard. Am Soc Test Mater 08:1–3. https://doi.org/10.1520/D7334-08R13.2

    Article  Google Scholar 

  18. Gontard N, Guilbert S, Cuq J-L (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58:206–211. https://doi.org/10.1111/j.1365-2621.1993.tb03246.x

    Article  CAS  Google Scholar 

  19. Horvat M, Ladiges D, Schuchmann HP (2014) Investigation of the nucleation during extrusion cooking of corn starch by a novel nucleation die. Food Bioprocess Technol 7:654–660. https://doi.org/10.1007/s11947-013-1109-5

    Article  CAS  Google Scholar 

  20. Biduski B, da Silva FT, da Silva WM, Halal SLME, Pinto VZ, Dias ARG, Zavareze ER (2017) Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chem 214:53–60. https://doi.org/10.1016/j.foodchem.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  21. Andreuccetti C, Carvalho RA, Galicia-García T, Martinez-Bustos F, González-Nuñez R, Grosso CRF (2012) Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: a preliminary study. J Food Eng 113:33–40. https://doi.org/10.1016/j.jfoodeng.2012.05.031

    Article  CAS  Google Scholar 

  22. Fakhouri FM, Costa D, Yamashita F, Martelli SM, Jesus RC, Alganer K, Collares-Queiroz FP, Innocentini-Mei LH (2013) Comparative study of processing methods for starch/gelatin films. Carbohydr Polym 95:681–689. https://doi.org/10.1016/j.carbpol.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  23. Park JW, Scott Whiteside W, Cho SY (2008) Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT Food Sci Technol 41:692–700. https://doi.org/10.1016/j.lwt.2007.04.015

    Article  CAS  Google Scholar 

  24. Ayala Valencia G, Djabourov M, Do Amaral PJ, Sobral (2016) Water desorption of cassava starch granules: a study based on thermogravimetric analysis of aqueous suspensions and humid powders. Carbohydr Polym 147:533–541. https://doi.org/10.1016/j.carbpol.2016.04.030

    Article  CAS  PubMed  Google Scholar 

  25. López-Córdoba A, Medina-Jaramillo C, Piñeros-Hernandez D, Goyanes S (2017) Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocoll 71:26–34. https://doi.org/10.1016/j.foodhyd.2017.04.028

    Article  CAS  Google Scholar 

  26. Seligra PG, Medina Jaramillo C, Famá L, Goyanes S (2016) Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohydr Polym 138:66–74. https://doi.org/10.1016/j.carbpol.2015.11.041

    Article  CAS  PubMed  Google Scholar 

  27. Vicentini NM, Dupuy N, Leitzelman M, Cereda MP, Sobral PJA (2005) Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra. Spectrosc Lett 38:749–767. https://doi.org/10.1080/00387010500316080

    Article  CAS  Google Scholar 

  28. Satmalawati MY, Pranoto EM, Marseno Y (2020) Oxidation of cassava starch at different dissolved ozone concentrations: effect on functional and structural properties. Food Res 4:1896–1904. https://doi.org/10.26656/fr.2017.4(6).209

    Article  Google Scholar 

  29. Pérez-Vergara LD, Cifuentes MT, Franco AP, Pérez-Cervera CE, Andrade-Pizarro RD (2020) Development and characterization of edible films based on native cassava starch, beeswax, and propolis. NFS J 21:39–49. https://doi.org/10.1016/j.nfs.2020.09.002

    Article  Google Scholar 

  30. Tanetrungroj Y, Prachayawarakorn J (2018) Effect of dual modification on properties of biodegradable crosslinked-oxidized starch and oxidized-crosslinked starch films. Int J Biol Macromol 120:1240–1246. https://doi.org/10.1016/j.ijbiomac.2018.08.137

    Article  CAS  PubMed  Google Scholar 

  31. Chimonyo W, Fletcher B, Peng Y (2020) The differential depression of an oxidized starch on the flotation of chalcopyrite and graphite. Min Eng 146:106114. https://doi.org/10.1016/j.mineng.2019.106114

    Article  CAS  Google Scholar 

  32. Assis RQ, Lopes SM, Costa TMH, Flôres SH, de Rios A (2017) Active biodegradable cassava starch films incorporated lycopene nanocapsules. Ind Crops Prod 109:818–827. https://doi.org/10.1016/j.indcrop.2017.09.043

    Article  CAS  Google Scholar 

  33. Singh A, Gu Y, Castellarin SD, Kitts DD, Pratap-Singh A (2020) Development and characterization of the edible packaging films incorporated with blueberry pomace. Foods 9:1599. https://doi.org/10.3390/foods9111599

    Article  CAS  PubMed Central  Google Scholar 

  34. Medina Jaramillo C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr Polym 151:150–159. https://doi.org/10.1016/j.carbpol.2016.05.025

    Article  CAS  PubMed  Google Scholar 

  35. Travalini AP, Lamsal B, Magalhães WLE, Demiate IM (2019) Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. Int J Biol Macromol 139:1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the São Paulo Research Foundation (FAPESP) for the postdoctoral fellowship of CIA La Fuente (2017/05307-8), the Ph.D. scholarship of L Siqueira (2019/21700-7), and the project EMU 2016/12385-2; and the National Council for Scientific and Technological Development (CNPq, Brazil) for funding the project of CIA La Fuente (429043/2018-0) and the productivity grants of PED Augusto (310839/2020-3) and CC Tadini (309548/2021).

Author information

Authors and Affiliations

Authors

Contributions

CIALF: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review and editing, project administration. LVS: methodology, formal analysis, investigation, data curation, writing—original draft, writing—review and editing. PEDA: conceptualization, methodology, formal analysis, writing—review and editing, supervision, project administration, funding acquisition. CCT: conceptualization, methodology, formal analysis, resources, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Carla I. A. La Fuente.

Ethics declarations

Conflict of interest

A patent related with this work was filed (BR1020190112166).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A patent related to this work was filed (BR1020190112166).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Fuente, C.I.A., do Val Siqueira, L., Augusto, P.E.D. et al. Bio-Based Plastic Based on Ozonated Cassava Starch Produced by Extrusion. J Polym Environ 30, 3974–3984 (2022). https://doi.org/10.1007/s10924-022-02488-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02488-0

Keywords

Navigation