Skip to main content
Log in

What One Can Learn by Studying Spectator Remnants in Central Nucleus–Nucleus Collisions?

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract—

In central collisions of heavy relativistic nuclei spectator matter is represented by noninteracting nucleons from the nuclear periphery. In the context of the AAMCC model based on the Glauber Monte Carlo model to determine the volume of spectator matter and the models of the decay of excited spectator matter from the Geant4 toolkit, it is shown that the yields of a certain number of neutrons in central collisions of 208Pb nuclei are sensitive to the presence of the neutron skin. When the neutron skin is considered in the calculations using various parameterizations of the excitation energy of spectator matter, an increase in the yield of spectator neutrons is especially noticeable in the events without the emission of spectator protons. The proposed new method for studying the neutron skin in relativistic nucleus–nucleus collisions by means of zero degree calorimeters complements the known methods used at significantly lower collision energies. It can be implemented at existing experimental facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Appelshäuser et al. (NA49 Collab.), “Spectator nucleons in Pb + Pb collisions at 158 A·GeV,” Eur. Phys. J. A 2, 383–390 (1998).

    Article  ADS  Google Scholar 

  2. B. Abelev et al. (ALICE Collaboration), “Centrality determination of Pb–Pb collisions \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV with ALICE,” Phys. Rev. C 88, 044909 (2013).

    Article  ADS  Google Scholar 

  3. C. Loizides, J. Kamin, and D. D’Enterria, “Improved Monte Carlo Glauber predictions at present and future nuclear colliders,” Phys. Rev. C 97, 054910 (2018).

    Article  ADS  Google Scholar 

  4. A. Steiner, M. Prakash, J. Lattimer, and P. Ellis, “Isospin asymmetry in nuclei and neutron stars,” Phys. Rep. 411, 325–375 (2005).

    Article  ADS  Google Scholar 

  5. C. J. Horowitz and J. Piekarewicz, “Neutron star structure and the neutron radius of 208Pb,” Phys. Rev. Lett. 86, 5647–5650 (2001).

    Article  ADS  Google Scholar 

  6. C. A. Bertulani and J. Valencia, “Neutron skins as laboratory constraints on properties of neutron stars and on what we can learn from heavy ion fragmentation reactions,” Phys. Rev. C 100, 015802 (2019).

    Article  ADS  Google Scholar 

  7. B. A. Brown, “Neutron radii in nuclei and the neutron equation of state,” Phys. Rev. Lett. 85, 5296–5299 (2000).

    Article  ADS  Google Scholar 

  8. M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C. J. Horowitz, J. Lee, W. G. Lynch, Z. Kohley, R. Lemmon, P. Möller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A. W. Steiner, I. Vidaña, and S. J. Yennello, “Constraints on the symmetry energy and neutron skins from experiments and theory,” Phys. Rev. C 86, 015803 (2012).

    Article  ADS  Google Scholar 

  9. A. Trzcińska, J. Jastrzębski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, “Neutron density distributions deduced from antiprotonic atoms,” Phys. Rev. Lett. 87, 082501 (2001).

    Article  ADS  Google Scholar 

  10. C. M. Tarbert et al. (Crystal Ball at MAMI and A2 Collab.), “Neutron skin of Pb-208 from coherent pion photoproduction,” Phys. Rev. Lett. 112, 242502 (2014).

    Article  ADS  Google Scholar 

  11. C. W. Ma, Y. Fu, D. Q. Fang, Y. G. Ma, X. Z. Cai, W. D. Tian, K. Wang, and C. Zhong, “Isospin effect and isoscaling phenomenon in projectile fragmentation,” Int. J. Mod. Phys. E 17, 1669–1680 (2008).

    Article  ADS  Google Scholar 

  12. D. Q. Fang, Y. G. Ma, X. Z. Cai, W. D. Tian, and H. W. Wang, “Neutron removal cross section as a measure of neutron skin,” Phys. Rev. C 81, 047603 (2010).

    Article  ADS  Google Scholar 

  13. D. Q. Fang, Y. G. Ma, X. Z. Cai, W. D. Tian, and H. W. Wang, “Effects of neutron skin thickness in peripheral nuclear reactions,” Chin. Phys. Lett. 28, 10–13 (2011).

    Google Scholar 

  14. T. Aumann, C. A. Bertulani, F. Schindler, and S. Typel, “Peeling off neutron skins from neutron-rich nuclei: Constraints on the symmetry energy from neutron-removal cross sections,” Phys. Rev. Lett. 119, 262501 (2017).

    Article  ADS  Google Scholar 

  15. M. Alvioli and M. Strikman, “Spin-isospin correlated configurations in complex nuclei and neutron skin effect in W ± production in high-energy proton-lead collisions,” Phys. Rev. C 100, 024912 (2019).

    Article  ADS  Google Scholar 

  16. S. De, “The effect of neutron skin on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies,” J. Phys. G 44, 045104 (2017).

    Article  ADS  Google Scholar 

  17. A. O. Svetlichnyi and I. A. Pshenichnov, “Formation of free and bound spectator nucleons in hadronic interactions between relativistic nuclei,” Bull. Russ. Acad. Sci.: Phys. 84, 911–916 (2020).

    Article  Google Scholar 

  18. I. A. Pshenichnov, U. A. Dmitrieva, and A. O. Svetlichnyi, “Secondary nuclei from peripheral and ultraperipheral collisions of relativistic heavy ions,” Bull. Russ. Acad. Sci.: Phys. 84, 1007–1011 (2020).

    Article  Google Scholar 

  19. J. Bondorf, A. Botvina, A. Iljinov, I. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei,” Phys. Rep. 257, 133–221 (1995).

    Article  ADS  Google Scholar 

  20. J. Allison et al. (Geant4 Collab.), “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016).

    Google Scholar 

  21. T. Ericson, “The statistical model and nuclear level densities,” Adv. Phys. 9, 425–511 (1960).

    Article  ADS  Google Scholar 

  22. A. Botvina, I. Mishustin, M. Begemann-Blaich, J. Hubele, G. Imme, I. Iori, P. Kreutz, G. Kunde, W. Kunze, V. Lindenstruth, U. Lynen, A. Moroni, W. Müller, C. Ogilvie, J. Pochodzalla, G. Raciti, T. Rubehn, H. Sann, A. Schüttauf, W. Seidel, W. Trautmann, and A. Wörner, “Multifragmentation of spectators in relativistic heavy-ion reactions,” Nucl. Phys. A 584, 737–756 (1995).

    Article  ADS  Google Scholar 

  23. A. B. Jones and B. A. Brown, “Two-parameter Fermi function fits to experimental charge and point-proton densities for Pb-208,” Phys. Rev. C 90, 067304 (2014).

    Article  ADS  Google Scholar 

  24. G. A. Miller, “Coherent-nuclear pion photoproduction and neutron radii,” Phys. Rev. C 100, 44608 (2019).

    Article  ADS  Google Scholar 

  25. V. Guzey, E. Kryshen, and M. Zhalov, “Photoproduction of light vector mesons in Xe–Xe ultraperipheral collisions at the LHC and the nuclear density of Xe-129,” Phys. Lett. B 782, 251–255 (2018).

    Article  ADS  Google Scholar 

  26. M. B. Golubeva, F. F. Guber, A. P. Ivashkin, A. Y. Isupov, A. B. Kurepin, A. G. Litvinenko, E. I. Litvinenko, I. I. Migulina, and V. F. Peresedov, “Nuclear-nuclear collision centrality determination by the spectators calorimeter for the MPD setup at the NICA facility,” Phys. At. Nucl. 76, 1–15 (2013).

    Article  Google Scholar 

  27. V. Golovatyuk, V. Kekelidze, V. Kolesnikov, O. Rogachevsky, and A. Sorin, “Multi-purpose detector to study heavy-ion collisions at the NICA collider,” Nucl. Phys. A 982, 963–966 (2019).

    Article  ADS  Google Scholar 

  28. D. A. Bauer, D. V. Karlovets, and V. G. Serbo, “Bound-free pair production in relativistic nuclear collisions from the NICA to the HE LHC colliders,” Eur. Phys. J. A 56, 4–8 (2020).

    Article  Google Scholar 

  29. B. Kłos, A. Trzcińska, J. Jastrzębski, T. Czosnyka, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, F. J. Hartmann, B. Ketzer, P. Ring, R. Schmidt, T. von Egidy, R. Smolańczuk, S. Wycech, K. Gulda, W. Kurcewicz, E. Widmann, and B. A. Brown, “Neutron density distributions from antiprotonic Pb-208 and Bi-209 atoms,” Phys. Rev. C 76, 014311 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I.A. Pshenichnov is grateful to Dariusz Miskowiec and Chiara Oppedisano for the discussions that paved the foundation for this work.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40035-mega.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Pshenichnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenichnov, I.A., Kozyrev, N.A., Svetlichnyi, A.O. et al. What One Can Learn by Studying Spectator Remnants in Central Nucleus–Nucleus Collisions?. Phys. Part. Nuclei 53, 335–341 (2022). https://doi.org/10.1134/S1063779622020691

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020691

Navigation