Skip to main content
Log in

The Phase Structure of Two Color QCD and Charged Pion Condensation Phenomenon

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The phase structure of dense quark matter in the two color case has been investigated with nonzero baryon \({{\mu }_{{\text{B}}}}\), isospin \({{\mu }_{{\text{I}}}}\) and chiral isospin \({{\mu }_{{{\text{I5}}}}}\) chemical potentials. It has been shown in the mean-field approximation that there exist three dualities, one of them between phases with spontaneous chiral symmetry breaking and condensation of charged pions, found in the three color case. The other two dual symmetries between the phase with condensation of charged pions and the phase with diquark condensation and between chiral symmetry breaking and diquark condensation phenomena. It has been demonstrated that due to the duality properties the phase diagram is extremely symmetric and the whole phase diagram in two color case can be obtained just by dualities from the phase structure of three color case. This shows that the dualities are rather usefull tool. It is shown that chiral imbalance generates charged pion condensation phenomenon in conditions of matter in neutron stars, i. e. electrically neutral and \(\beta \)-equilibrated dense quark matter. And that diquark condensation does not prohibit the generation of the charged PC phase by chiral imbalance at least in the two color case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

    Article  ADS  Google Scholar 

  2. S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992), D. Ebert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994); T. Inagaki, T. Muta, and S. D. Odintsov, Prog. Theor. Phys. Suppl. 127, 93 (1997); M. Buballa, Phys. Rep. 407, 205 (2005); A. A. Garibli, R. G. Jafarov, and V. E. Rochev, Symmetry 11, 668 (2019).

    Article  Google Scholar 

  3. M. Ruggieri, G. X. Peng, and M. Chernodub, EPJ Web Conf. 129, 00037 (2016), M. Ruggieri and G. X. Peng, Phys. Rev. D 93, 094021 (2016).

    Article  ADS  Google Scholar 

  4. R. Gatto and M. Ruggieri, Phys. Rev. D 85, 054013 (2012);

    Article  ADS  Google Scholar 

  5. L. Yu, H. Liu and M. Huang, Phys. Rev. D 90, 074009 (2014), Phys. Rev. D 94, 014026 (2016); M. Ruggieri and G. X. Peng, J. Phys. G 43, 125101 (2016); A. A. Andrianov, V. A. Andrianov, and D. Espriu, Particles 3, 15 (2020), D. Espriu, A. G. Nicola, and A. Vioque-Rodríguez, arXiv:2002.11696 [hep-ph] (2020).

  6. V. V. Braguta and A. Y. Kotov, Phys. Rev. D 93, 105025 (2016); V. V. Braguta, E. M. Ilgenfritz, A. Y. Kotov, B. Petersson, and S. A. Skinderev, Phys. Rev. D 93, 034509 (2016); N. Y. Astrakhantsev, V. V. Braguta, A. Y. Kotov, and A. A. Nikolaev, arXiv:1902.09325 [hep-lat] (2019); V. V. Braguta, V. A. Goy, E.-M. Ilgenfritz, A. Y. Kotov, A. V. Molochkov, M. Muller-Preussker, and B. Petersson, J. High Energy Phys. 1506, 094 (2015); V. V. Braguta, M. I. Katsnelson, A. Y. Kotov, and A. M. Trunin, Phys. Rev. B 100, 085117 (2019).

    Article  ADS  Google Scholar 

  7. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).

    Article  ADS  Google Scholar 

  8. J. B. Kogut, M. A. Stephanov, and D. Toublan, Phys. Lett. B 464, 183 (1999); J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M. Verbaarschot, and A. Zhitnitsky, Nucl. Phys. B 582, 477 (2000).

    Article  ADS  Google Scholar 

  9. K. Splittorff, D. T. Son. and M. A. Stephanov, Phys. Rev. D 64, 016003 (2001).

    Article  ADS  Google Scholar 

  10. C. Ratti and W. Weise, Phys. Rev. D 70, 054013 (2004).

    Article  ADS  Google Scholar 

  11. D. C. Duarte, P. G. Allen, R. L. S. Farias, P. H. A. Manso, R. O. Ramos, and N. N. Scoccola, Phys. Rev. D 93, 025017 (2016).

    Article  ADS  Google Scholar 

  12. J. O. Andersen and A. A. Cruz, Phys. Rev. D 88, 025016 (2013).

    Article  ADS  Google Scholar 

  13. T. Brauner, K. Fukushima, and Y. Hidaka, Phys. Rev. D 80, 074035 (2009);

    Article  ADS  Google Scholar 

  14. Erratum: T. Brauner, K. Fukushima, and Y. Hidaka, Phys. Rev. D 81, 119904 (2010).

    Article  ADS  Google Scholar 

  15. J. O. Andersen and T. Brauner, Phys. Rev. D 81, 096004 (2010).

    Article  ADS  Google Scholar 

  16. S. Imai, H. Toki and W. Weise, Nucl. Phys. A 913, 71 (2013).

    Article  ADS  Google Scholar 

  17. J. Chao, arXiv:1808.01928 [hep-ph].

  18. V. G. Bornyakov, V. V. Braguta, A. A. Nikolaev, and R. N. Rogalyov, arXiv:2003.00232 [hep-lat].

  19. T. G. Khunjua, K. G. Klimenko, and R. N. Zhokhov, Eur. Phys. J. C 79, 151 (2019); G. Khunjua, K. G. Klimenko, and R. N. Zhokhov, J. High Energy Phys. 1906, 006 (2019); G. Khunjua, K. G. Klimenko, and R. N. Zhokhov, J. Phys. Conf. Ser. 1390, 012015 (2019), arXiv:1812.01392 [hep-ph].

  20. T. G. Khunjua, K. G. Klimenko, and R. N. Zhokhov, Phys. Rev. D 97, 054036 (2018).

    Article  ADS  Google Scholar 

  21. T. Khunjua, K. Klimenko, and R. Zhokhov, EPJ Web Conf. 191, 05015 (2018); T. Khunjua, K. Klimenko, and R. Zhokhov, Phys. Rev. D 98, 054030 (2018); T. Khunjua, K. Klimenko, and R. Zhokhov, Phys. Rev. D 100, 034009 (2019), T. Khunjua, K. Klimenko, and R. Zhokhov, Moscow Univ. Phys. Bull. 74, 473 (2019).

    ADS  Google Scholar 

  22. L. He, M. Jin, and P. Zhuang, Phys. Rev. D 71, 116001 (2005); D. Ebert and K. G. Klimenko, J. Phys. G 32, 599 (2006), Eur. Phys. J. C 46, 771 (2006); Cheng-fu Mu, Lian-yi He, and Yu-xin Liu, Phys. Rev. D 82, 056006 (2010).

    Article  ADS  Google Scholar 

  23. D. Ebert and K. G. Klimenko, Eur. Phys. J. C 46, 771 (2006).

    Article  ADS  Google Scholar 

  24. H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, and M. Ruggieri, Phys. Rev. D 79, 034032 (2009); R. Anglani, Acta Phys. Polon. Supp. 3, 735 (2010).

    Google Scholar 

  25. T. Khunjua, K. Klimenko, and R. Zhokhov, Symmetry 11, 778 (2019); T. Khunjua, K. Klimenko, and R. Zhokhov, Particles 3, 62 (2020).

    Article  Google Scholar 

  26. N. V. Gubina, K. G. Klimenko, S. G. Kurbanov, and V. C. Zhukovsky, Phys. Rev. D 86, 085011 (2012).

    Article  ADS  Google Scholar 

  27. D. Ebert, T. G. Khunjua, K. G. Klimenko, and V. C. Zhukovsky, Int. J. Mod. Phys. A 27, 1250162 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

R.N.Z. is grateful for support of Russian Science Foundation under the grant 19-72-00077. The work is also supported by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Zhokhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khunjua, T.G., Klimenko, K.G. & Zhokhov, R.N. The Phase Structure of Two Color QCD and Charged Pion Condensation Phenomenon. Phys. Part. Nuclei 53, 461–469 (2022). https://doi.org/10.1134/S1063779622020393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020393

Navigation