Skip to main content
Log in

Equation of State of Magnetized PNJL Model in Finite Chemical Potential

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We study on the recent research work of two flavor magnetized PNJL model incorporating finite chemical potential in the thermal mass and in the interaction potential of Lagrangian density. The equation of state (EOS) and its corresponding thermodynamic properties after introducing the finite chemical potential in the thermal mass and potential are shown in the results. The results show that the EOS and thermodynamic relations are found to be similar pattern and enhanced results from the earlier results of EOS and thermodynamic relations of zero chemical potential. It indicates that there is effect of finite chemical potential in the outputs of EOS and the thermodynamic relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. P. Menezes, M. B. Pinto, S. S. Avancini, and C. Providência, “Quark matter under strong magnetic fields in the \({\text{SU}}(3)\) Nambu–Jona-Lasinio model,” Phys. Rev. C 80, 065805 (2009).

    Article  Google Scholar 

  2. G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D. Katz, S. Krieg, A. Schäfer, and K. K. Szabó, “The QCD phase diagram for external magnetic fields,” J. High Energy Phys. 2, 44 (2012) .

    Article  ADS  Google Scholar 

  3. K. Fukushima, M. Ruggieri, and R. Gatto, “Chiral magnetic effect in the Polyakov–Nambu–Jona-Lasinio model,” Phys Rev D 81, 114031 (2010).

    Article  ADS  Google Scholar 

  4. S. Rößner, T. Hell, C. Ratti, and W. Weise, “The chiral and deconfinement crossover transitions: PNJL model beyond mean field,” Nucl. Phys. A 814, 118–143 (2008).

    Article  ADS  Google Scholar 

  5. P. Costa, C. A. de Sousa, M. C. Ruivo, and Yu. L. Kalinovsky, “The QCD critical end point in the SU(3) Nambu–Jona-Lasinio model,” Phys. Lett. B 647, 431–435 (2007).

    Article  ADS  Google Scholar 

  6. A. Dahiya and S. S. Singh, “Equation of state of PNJL model under the influence of thermal mass and magnetic field,” Pramana J. Phys. 94, 121 (2020).

    Article  ADS  Google Scholar 

  7. A. N. Tawfik, A. M. Diab, and M. T. Hussein, “Quark-hadron phase structure thermodynamics and magnetization of QCD matter,” J. Phys. G 45, 055008 (2018).

    Article  ADS  Google Scholar 

  8. S. Lawley, W. Bentz, and A. W. Thomas, “Nucleons, nuclear matter and quark matter: A unified NJL approach,” J. Phys. G 32, 667 (2006).

    Article  ADS  Google Scholar 

  9. K. Fukushima, “Chiral effective model with the Polyakov loop,” Phys. Lett. B 591, 277 (2004).

    Article  ADS  Google Scholar 

  10. S. S. Singh and Y. Kumar, “Dilepton production in thermal dependent baryonic quark gluon plasma,” Can. J. Phys. 92, 31 (2014).

    Article  ADS  Google Scholar 

  11. S. P. Klevansky, “The Nambu–Jona-Lasinio model of quantum chromodynamics,” Rev. Mod. Phys. 64, 649 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  12. P. Wang, A. W. Thomas, and A. G. Williams, “Phase transition from hadronic matter to quark matter,” Phys. Rev. C 75, 045202 (2007).

    Article  ADS  Google Scholar 

  13. M. Fukugita and A. Ukawa, “Deconfining and chiral transitions of finite-temperature quantum chromodynamics in the presence of dynamical quark loops,” Phys. Rev. Lett. B 57, 503 (1986).

    Article  ADS  Google Scholar 

  14. S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa, and R. Ray, “Susceptibilities and speed of sound from the Polyakov–Nambu–Jona-Lasinio model,” Phys. Rev. D 73, 114007 (2006).

    Article  ADS  Google Scholar 

  15. K. Kashiwa, H. Kouno, M. Matsuzaki, and M. Yahiro, “Critical endpoint in the Polyakov-loop extended NJL model,” Phys. Lett. B 662, 26 (2008).

    Article  ADS  Google Scholar 

  16. C. Ratti, S. Roessner, and W. Weise, “Quark number susceptibilities: Lattice QCD versus PNJL model,” Phys. Lett. B 649, 57 (2007).

    Article  ADS  Google Scholar 

  17. G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D. Katz, and A. Schäfer, “QCD quark condensate in external magnetic fields,” Phys. Rev. D 86, 071502 (2012).

    Article  ADS  Google Scholar 

  18. Y. Hatta and T. Ikeda, “Universality, the QCD critical and tricritical point, and the quark number susceptibility,” Phys. Rev. D 67, 014028 (2003).

    Article  ADS  Google Scholar 

  19. M. Ferreira, P. Costa, D. P. Menezes, C. Providencia, and N. N. Scoccola, “Deconfinement and chiral restoration within the SU(3) Polyakov–Nambu–Jona-Lasinio and entangled Polyakov–Nambu–Jona-Lasinio models in an external magnetic field,” Phys.Rev. D 89, 016002 (2014).

    Article  ADS  Google Scholar 

  20. D. H. Rischke, D. T. Son, and M. A. Stephanov, “Asymptotic deconfinement in high-density QCD,” Phys. Rev. Lett. B 87, 062001 (2001).

    Article  ADS  Google Scholar 

  21. D. Blaschke, S. Fredriksson, H. Grigorian, A. M. Oztas, and F. Sandin, “Phase diagram of three-flavor quark matter under compact star constraints,” Phys. Rev. D 72, 065020 (2005).

    Article  ADS  Google Scholar 

  22. C. Nonaka and M. Asakawa, “Hydrodynamical evolution near the QCD critical end point,” Phys. Rev. C 71, 044904 (2005).

    Article  ADS  Google Scholar 

  23. P. de Forcrand and O. Philipsen, “The QCD phase diagram for three degenerate flavors and small baryon density,” Nucl. Phys. B 673, 170 (2003).

    Article  ADS  Google Scholar 

  24. S. Ejiri, T. Hatsuda, N. Ishii, Y. Maezawa, N. Ukita, S. Aoki, and K. Kanaya, “Equation of state for two-flavor QCD with an improved Wilson quark action at non-zero chemical potential,” arXiv:hep-lat/0609075.

  25. J. O. Andersen, W. R. Naylor, and A. Tranberg, “Phase diagram of QCD in a magnetic field,” Rev. Mod. Phys. 88, 025001 (2016).

    Article  ADS  Google Scholar 

  26. M. Buballa, “NJL-model analysis of dense quark matter,” Phys. Rep. 407, 205 (2005).

    Article  ADS  Google Scholar 

  27. Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo, “The QCD equation of state with dynamical quarks,” J. High Energy Phys. 0601, 089 (2006).

Download references

ACKNOWLEDGMENTS

We thank R. Ramanathan for his suggestions in fulfilling the manuscript’s writing and for his useful discussions in preparing the manuscript. The author, Anju thanks the University and CSIR, Delhi for providing financial supports in terms of Senior Research Fellowship (SRF) for this work successful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Somorendro Singh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anju Dahiya, Gupta, K.K. & Singh, S.S. Equation of State of Magnetized PNJL Model in Finite Chemical Potential. Phys. Part. Nuclei 53, 354–360 (2022). https://doi.org/10.1134/S1063779622020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020101

Keywords:

Navigation