Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2021

Characteristics of carbide slag slurry flow in a bubble column carbonation reactor

  • Peng Zheng , Genfu Zhou , Weiling Li ORCID logo EMAIL logo , Chuanwen Zhao , Pu Huang , Junye Hua , Jian Sun and Yafei Guo

Abstract

The direct aqueous mineral carbonation of carbide slag was investigated. The flow characteristics of carbide slag-CO2-water reaction system in a bubble column were studied, which included the bubble Sauter mean diameter, gas holdup, bubble residence time, and the gas-liquid interfacial area. Bubble flow behaviors in the reactor were characterized by analyzing the bed pressure signals. The effects of the gas velocity (U g ) and liquid to solid ratio (L/S ratio) were discussed and analyzed. The results showed that the larger bubbles were easy to form at the larger L/S ratio, which indicated that the bubble coalescence was promoted. The gas holdup was larger when increasing U g or reducing the L/S ratio. The better gas-liquid interfacial areas were found in a wide range of L/S ratio at U g  = 0.082 m/s. The optimum conditions were found at U g  = 0.082 m/s and L/S ratio = 15–30 mL/g for the better gas-liquid interfacial area and the higher carbide slag conversion. The work provided the theoretical basis for the direct aqueous carbonation of the carbide slag and the operation condition optimization.


Corresponding author: Weiling Li, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, China, E-mail: .

Award Identifier / Grant number: 51706108

Award Identifier / Grant number: 184080H202B73

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 5210060338

Funding source: Jiangsu Natural Science Foundation BK20200731

Nomenclature

Symbols
a int

gas-liquid interfacial area

d 32

Sauter mean diameter

F

dimensionless number

Mo

Morton number

U g

superficial gas velocity

U b

bubble rise velocity

t

bubble residence time

Greek symbols
ε g

gas holdup

ρ

density

σ

Surface tension

μ

Viscosity

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by the National Natural Science Foundation of China (51706108), Natural Science Foundation of Jiangsu Higher Education Institutions of China (17KJB470008), and Research Startup Project of Nanjing Normal University (184080H202B73).

  3. Conflict of interest statement: The authors have declared no conflict of interest.

References

Abufalgha, A. A., K. G. Clarke, and R. W. M. Pott. 2020. “Characterisation of Bubble Diameter and Gas Hold-Up in Simulated Hydrocarbon-Based Bioprocesses in a Bubble Column Reactor.” Biochemical Engineering Journal 158: 107577, https://doi.org/10.1016/j.bej.2020.107577.Search in Google Scholar

Ail, S. S., and S. Dasappa. 2016. “Biomass to Liquid Transportation Fuel via Fischer Tropsch Synthesis–Technology Review and Current Scenario.” Renewable and Sustainable Energy Reviews 58: 267–86, https://doi.org/10.1016/j.rser.2015.12.143.Search in Google Scholar

Asil, A. G., A. N. Pour, and S. Mirzaei. 2020. “Intrinsic Hydrodynamic Investigation of Three-Phase Bubble Column: Comparative Experimental Study on Gas Holdup.” Theoretical Foundations of Chemical Engineering 54 (2): 331–41, https://doi.org/10.1134/s0040579520020050.Search in Google Scholar

Barahoei, M., M. S. Hatamipour, and S. Afsharzadeh. 2020. “CO2 Capturing by Chlorella Vulgaris in a Bubble Column Photo-Bioreactor; Effect of Bubble Size on CO2 Removal and Growth Rate.” Journal of CO2 Utilization 37: 9–19, https://doi.org/10.1016/j.jcou.2019.11.023.Search in Google Scholar

Barghi, S., A. Prakash, A. Margaritis, and M. Bergougnou. 2004. “Flow Regime Identification in a Slurry Bubble Column from Gas Holdup and Pressure Fluctuations Analysis.” Canadian Journal of Chemical Engineering 82 (5): 865–70.10.1002/cjce.5450820501Search in Google Scholar

Besagni, G., and F. Inzoli. 2016. “Bubble Size Distributions and Shapes in Annular Gap Bubble Column.” Experimental Thermal and Fluid Science 74: 27–48, https://doi.org/10.1016/j.expthermflusci.2015.11.020.Search in Google Scholar

Bouaifi, M., G. Hebrard, D. Bastoul, and M. Roustan. 2001. “A Comparative Study of Gas Hold-Up, Bubble Size, Interfacial Area and Mass Transfer Coefficients in Stirred Gas-Liquid Reactors and Bubble Columns.” Chemical Engineering and Processing 40 (2): 97–111, https://doi.org/10.1016/s0255-2701(00)00129-x.Search in Google Scholar

Chang, E.-E., A.-C. Chiu, S.-Y. Pan, Y.-H. Chen, C.-S. Tan, and P.-C. Chiang. 2013. “Carbonation of Basic Oxygen Furnace Slag with Metalworking Wastewater in a Slurry Reactor.” International Journal of Greenhouse Gas Control 12: 382–9, https://doi.org/10.1016/j.ijggc.2012.11.026.Search in Google Scholar

Chang, E. E., C.-H. Chen, Y.-H. Chen, S.-Y. Pan, and P.-C. Chiang. 2011a. “Performance Evaluation for Carbonation of Steel-Making Slags in a Slurry Reactor.” Journal of Hazardous Materials 186 (1): 558–64, https://doi.org/10.1016/j.jhazmat.2010.11.038.Search in Google Scholar PubMed

Chang, E. E., S.-Y. Pan, Y.-H. Chen, H.-W. Chu, C.-F. Wang, and P.-C. Chiang. 2011b. “CO2 Sequestration by Carbonation of Steelmaking Slags in an Autoclave Reactor.” Journal of Hazardous Materials 195: 107–14, https://doi.org/10.1016/j.jhazmat.2011.08.006.Search in Google Scholar PubMed

Chen, K.-W., S.-Y. Pan, C.-T. Chen, Y.-H. Chen, and P.-C. Chiang. 2016. “High-gravity Carbonation of Basic Oxygen Furnace Slag for CO2 Fixation and Utilization in Blended Cement.” Journal of Cleaner Production 124: 350–60, https://doi.org/10.1016/j.jclepro.2016.02.072.Search in Google Scholar

Chen, Z., H. Wang, J. Zhuo, and C. You. 2018. “Enhancement of Mass Transfer between Flue Gas and Slurry in the Wet Flue Gas Desulfurization Spray Tower.” Energy & Fuels 32 (1): 703–12, https://doi.org/10.1021/acs.energyfuels.7b03009.Search in Google Scholar

Cheng, L., T. Li, T. Keener, and J.-Y. Lee. 2013. “A Mass Transfer Model of Absorption of Carbon Dioxide in a Bubble Column Reactor by Using Magnesium Hydroxide Slurry.” International Journal of Greenhouse Gas Control 17: 240–9, https://doi.org/10.1016/j.ijggc.2013.05.018.Search in Google Scholar

Costa, G., R. Baciocchi, A. Polettini, R. Pomi, C. D. Hills, and P. J. Carey. 2007. “Current Status and Perspectives of Accelerated Carbonation Processes on Municipal Waste Combustion Residues.” Environmental Monitoring and Assessment 135 (1): 55–75, https://doi.org/10.1007/s10661-007-9704-4.Search in Google Scholar PubMed

Dora, D. T. K., Y. K. Mohanty, and G. K. Roy. 2012. “Hydrodynamics of Three-phase Fluidization of a Homogeneous Ternary Mixture of Irregular Particles.” Chemical Engineering Science 79: 210–8, https://doi.org/10.1016/j.ces.2012.04.035.Search in Google Scholar

Ekambara, K., and J. B. Joshi. 2003. “CFD Simulation of Residence Time Distribution and Mixing in Bubble Column Reactors.” Canadian Journal of Chemical Engineering 81 (3–4): 669–76, https://doi.org/10.1205/026387603322482220.Search in Google Scholar

Fan, L.-S., A. Matsuura, and S.-H. Chern. 1985. “Hydrodynamic Characteristics of a Gas-Liquid-Solid Fluidized Bed Containing a Binary Mixture of Particles.” AIChE Journal 31 (11): 1801–10, https://doi.org/10.1002/aic.690311106.Search in Google Scholar

Fernandez-Bertos, M., X. Li, S. J. R. Simons, C. D. Hills, and P. J. Carey. 2004. “Investigation of Accelerated Carbonation for the Stabilisation of MSW Incinerator Ashes and the Sequestration of CO2.” Green Chemistry 6 (8): 428–36, https://doi.org/10.1039/b401872a.Search in Google Scholar

Folgueira, I., I. Teijido, A. García-Abuín, D. Gómez-Díaz, and A. Rumbo. 2014. “2-(Methylamino)ethanol for CO2 Absorption in a Bubble Reactor.” Energy & Fuels 28 (7): 4737–45, https://doi.org/10.1021/ef500923b.Search in Google Scholar

Gunning, P. J., C. D. Hills, and P. J. Carey. 2010. “Accelerated Carbonation Treatment of Industrial Wastes.” Waste Management 30 (6): 1081–90, https://doi.org/10.1016/j.wasman.2010.01.005.Search in Google Scholar PubMed

Huntzinger, D. N., J. S. Gierke, S. K. Kawatra, T. C. Eisele, and L. L. Sutter. 2009a. “Carbon Dioxide Sequestration in Cement Kiln Dust Through Mineral Carbonation.” Environmental Science & Technology 43 (6): 1986–92, https://doi.org/10.1021/es802910z.Search in Google Scholar PubMed

Huntzinger, D. N., J. S. Gierke, L. L. Sutter, S. K. Kawatra, and T. C. Eisele. 2009b. “Mineral Carbonation for Carbon Sequestration in Cement Kiln Dust from Waste Piles.” Journal of Hazardous Materials 168 (1): 31–7, https://doi.org/10.1016/j.jhazmat.2009.01.122.Search in Google Scholar PubMed

Ibrahim, M. H., M. H. El-Naas, A. Benamor, S. S. Al-Sobhi, and Z. Zhang. 2019. “Carbon Mineralization by Reaction with Steel-Making Waste: A Review.” Processes 7 (2): 115, https://doi.org/10.3390/pr7020115.Search in Google Scholar

Jamialahmadi, M., M. R. Zehtaban, H. Müller-Steinhagen, A. Sarrafi, and J. M. Smith. 2001. “Study of Bubble Formation Under Constant Flow Conditions.” Chemical Engineering Research and Design 79 (5): 523–32, https://doi.org/10.1205/02638760152424299.Search in Google Scholar

Jhawar, A., and A. Prakash. 2011. “Heat Transfer in a Slurry Bubble Column Reactor: A Critical Overview.” Industrial & Engineering Chemistry Research 51 (4): 1464–73, https://doi.org/10.1021/ie201108b.Search in Google Scholar

Kalaga, D. V., M. Ansari, D. E. Turney, F. Hernandez-Alvarado, S. Kleinbart, K. E. ArunKumar, J. B. Joshi, S. Banerjee, and M. Kawaji. 2020. “Scale-Up of a Downflow Bubble Column: Experimental Investigations.” Chemical Engineering Journal 386: 121447, doi:https://doi.org/10.1016/j.cej.2019.04.027.Search in Google Scholar

Kantarci, N., F. Borak, and K. O. Ulgen. 2005. “Bubble Column Reactors.” Process Biochemistry 40 (7): 2263–83, https://doi.org/10.1016/j.procbio.2004.10.004.Search in Google Scholar

Krammart, P., and S. Tangtermsirikul. 2004. “Properties of Cement Made by Partially Replacing Cement Raw Materials with Municipal Solid Waste Ashes and Calcium Carbide Waste.” Construction and Building Materials 18 (8): 579–83, https://doi.org/10.1016/j.conbuildmat.2004.04.014.Search in Google Scholar

Lackner, K. S. 2003. “A Guide to CO2 Sequestration.” Science 300 (5626): 1677–8, https://doi.org/10.1126/science.1079033.Search in Google Scholar PubMed

Lee, M.-G., D. Kang, H. Jo, and J. Park. 2016. “Carbon Dioxide Utilization with Carbonation Using Industrial Waste-Desulfurization Gypsum and Waste Concrete.” Journal of Material Cycles and Waste Management 18 (3): 407–12, https://doi.org/10.1007/s10163-015-0461-0.Search in Google Scholar

Li, T., T. C. Keener, and L. Cheng. 2014. “Carbon Dioxide Removal by Using Mg(OH)2 in a Bubble Column: Effects of Various Operating Parameters.” International Journal of Greenhouse Gas Control 31: 67–76, https://doi.org/10.1016/j.ijggc.2014.09.027.Search in Google Scholar

Li, W.-L., W.-Q. Zhong, B.-S. Jin, R. Xiao, and T.-T. He. 2013. “Flow Regime Identification in a Three-Phase Bubble Column Based on Statistical, Hurst, Hilbert–Huang Transform and Shannon Entropy Analysis.” Chemical Engineering Science 102: 474–85, https://doi.org/10.1016/j.ces.2013.08.052.Search in Google Scholar

Li, Y., M. Su, X. Xie, S. Wu, and C. Liu. 2015. “CO2 Capture Performance of Synthetic Sorbent Prepared from Carbide Slag and Aluminum Nitrate Hydrate by Combustion Synthesis.” Applied Energy 145: 60–8, https://doi.org/10.1016/j.apenergy.2015.01.061.Search in Google Scholar

Li, Y., R. Sun, C. Liu, H. Liu, and C. Lu. 2012. “CO2 Capture by Carbide Slag from Chlor-Alkali Plant in Calcination/Carbonation Cycles.” International Journal of Greenhouse Gas Control 9: 117–23, https://doi.org/10.1016/j.ijggc.2012.03.012.Search in Google Scholar

Luo, X., D. J. Lee, R. Lau, G. Yang, and L. S. Fan. 2010. “Maximum Stable Bubble Size and Gas Holdup in High-Pressure Slurry Bubble Columns.” AIChE Journal 45 (4): 665–80.10.1002/aic.690450402Search in Google Scholar

Ma, J., D. Liu, and X. Chen. 2016. “Bubble Behaviors of Large Cohesive Particles in a 2D Fluidized Bed.” Industrial & Engineering Chemistry Research 55 (3): 624–34, https://doi.org/10.1021/acs.iecr.5b02789.Search in Google Scholar

Ma, X., Y. Li, X. Yan, W. Zhang, J. Zhao, and Z. Wang. 2019. “Preparation of a Morph-Genetic CaO-Based Sorbent Using Paper Fibre as a Biotemplate for Enhanced CO2 Capture.” Chemical Engineering Journal 361: 235–44, https://doi.org/10.1016/j.cej.2018.12.061.Search in Google Scholar

Maceiras, R., E. Álvarez, and M. A. Cancela. 2010. “Experimental Interfacial Area Measurements in a Bubble Column.” Chemical Engineering Journal 163 (3): 331–6, https://doi.org/10.1016/j.cej.2010.08.011.Search in Google Scholar

Maretto, C., and R. Krishna. 1999. “Modelling of a Bubble Column Slurry Reactor for Fischer–Tropsch Synthesis.” Catalysis Today 52 (2): 279–89, https://doi.org/10.1016/s0920-5861(99)00082-6.Search in Google Scholar

Mota, A., A. A. Vicente, and J. Teixeira. 2011. “Effect of Spent Grains on Flow Regime Transition in Bubble Column.” Chemical Engineering Science 66 (14): 3350–7, https://doi.org/10.1016/j.ces.2011.01.042.Search in Google Scholar

Niu, S., M. Liu, C. Lu, H. Li, and M. Huo. 2014. “Thermogravimetric Analysis of Carbide Slag.” Journal of Thermal Analysis and Calorimetry 115 (1): 73–9, https://doi.org/10.1007/s10973-013-3268-z.Search in Google Scholar

Okhovat-Alavian, S. M., J. Behin, and N. Mostoufi. 2020. “Investigating Bubble Dynamics in a Semi-Cylindrical Gas-Solid Fluidized Bed.” Powder Technology 370: 129–36, https://doi.org/10.1016/j.powtec.2020.05.032.Search in Google Scholar

Pan, S.-Y., E. Chang, and P.-C. Chiang. 2012. “CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on its Principles and Applications.” Aerosol and Air Quality Research 12 (5): 770–91, https://doi.org/10.4209/aaqr.2012.06.0149.Search in Google Scholar

Pan, S.-Y., A. Chiang, E. Chang, Y.-P. Lin, H. Kim, and P.-C. Chiang. 2015. “An Innovative Approach to Integrated Carbon Mineralization and Waste Utilization: A Review.” Aerosol and Air Quality Research 15: 1072–91, https://doi.org/10.4209/aaqr.2014.10.0240.Search in Google Scholar

Pan, S.-Y., T.-C. Ling, A.-H. A. Park, and P.-C. Chiang. 2018. “An Overview: Reaction Mechanisms and Modelling of CO2 Utilization via Mineralization.” Aerosol and Air Quality Research 18 (4): 829–48, https://doi.org/10.4209/aaqr.2018.03.0093.Search in Google Scholar

Pan, S.-Y., H.-L. Liu, E.-E. Chang, H. Kim, Y.-H. Chen, and P.-C. Chiang. 2016. “Multiple Model Approach to Evaluation of Accelerated Carbonation for Steelmaking Slag in a Slurry Reactor.” Chemosphere 154: 63–71, https://doi.org/10.1016/j.chemosphere.2016.03.093.Search in Google Scholar

Polettini, A., R. Pomi, and A. Stramazzo. 2016. “Carbon Sequestration through Accelerated Carbonation of BOF Slag: Influence of Particle Size Characteristics.” Chemical Engineering Journal 298: 26–35, https://doi.org/10.1016/j.cej.2016.04.015.Search in Google Scholar

Rodrigue, D. 2010. “A General Correlation for the Rise Velocity of Single Gas Bubbles.” Canadian Journal of Chemical Engineering 82 (2): 382–6.10.1002/cjce.5450820219Search in Google Scholar

Sasaki, S., K. Uchida, K. Hayashi, and A. Tomiyama. 2017. “Effects of Column Diameter and Liquid Height on Gas Holdup in Air-Water Bubble Columns.” Experimental Thermal and Fluid Science 82: 359–66, https://doi.org/10.1016/j.expthermflusci.2016.11.032.Search in Google Scholar

Schäfer, R., C. Merten, and G. Eigenberger. 2002. “Bubble Size Distributions in a Bubble Column Reactor Under Industrial Conditions.” Experimental Thermal and Fluid Science 26 (6): 595–604.10.1016/S0894-1777(02)00189-9Search in Google Scholar

Shah, Y. T., B. G. Kelkar, S. P. Godbole, and W. D. Deckwer. 1982. “Design Parameters Estimations for Bubble Column Reactors.” AIChE Journal 28 (3): 353–79, https://doi.org/10.1002/aic.690280302.Search in Google Scholar

Shin, I. S., S. M. Son, U. Y. Kim, Y. Kang, S. D. Kim, and H. Jung. 2009. “Multiple Effects of Operating Variables on the Bubble Properties in Three-Phase Slurry Bubble Columns.” Korean Journal of Chemical Engineering 26 (2): 587–91, https://doi.org/10.1007/s11814-009-0100-3.Search in Google Scholar

Song, H.-S., D. Ramkrishna, S. Trinh, R. L. Espinoza, and H. Wright. 2003. “Multiplicity and Sensitivity Analysis of Fischer–Tropsch Bubble Column Slurry Reactors: Plug-Flow Gas and Well-Mixed Slurry Model.” Chemical Engineering Science 58 (12): 2759–66, https://doi.org/10.1016/s0009-2509(03)00125-8.Search in Google Scholar

Sun, J., W. Q. Liu, Y. C. Hu, J. Q. Wu, M. K. Li, X. W. Yang, W. Y. Wang, M. H. Xu, et al. 2016a. “Enhanced Performance of Extruded–Spheronized Carbide Slag Pellets for High Temperature CO2 Capture.” Chemical Engineering Journal 285 (285): 293–303, https://doi.org/10.1016/j.cej.2015.10.026.Search in Google Scholar

Sun, J., W. Q. Liu, W. Y. Wang, Y. C. Hu, X. W. Yang, H. Q. Chen, Y. Zhang, X. Li, M. H. Xu, et al. 2016b. “Optimizing Synergy between Disposal and Cement Plant CO2 Capture by the Calcium Looping Process.” Energy & Fuels 30 (2): 1256–65, https://doi.org/10.1021/acs.energyfuels.6b01131.Search in Google Scholar

Sun, J., J. Wang, Y. Yang, and Z. Zhu. 2015. “Effects of External Electric Field on Bubble and Charged Particle Hydrodynamics in a Gas–Solid Fluidized Bed.” Advanced Powder Technology 26 (2): 563–75, https://doi.org/10.1016/j.apt.2015.01.006.Search in Google Scholar

Tan, W., Z. Zhang, H. Li, Y. Li, and Z. Shen. 2017. “Carbonation of Gypsum from Wet Flue Gas Desulfurization Process: Experiments and Modeling.” Environmental Science and Pollution Research International 24 (9): 8602–8, https://doi.org/10.1007/s11356-017-8480-0.Search in Google Scholar PubMed

Trisakti, B., J. Oshitani, and Z. Tanaka. 2001. “Circulating Particle Flow and Air Bubble Behavior at Various Superficial Air Velocities in Two-Dimensional Gas–Solid Fluidized Beds.” Advanced Powder Technology 12 (4): 507–19, https://doi.org/10.1163/15685520152756642.Search in Google Scholar

Veera, U. P., and J. B. Joshi. 1999. “Measurement of Gas Hold-Up Profiles by Gamma Ray Tomography: Effect of Sparger Design and Height of Dispersion in Bubble Columns.” Chemical Engineering Research and Design 77 (4): 303–17, https://doi.org/10.1205/026387699526232.Search in Google Scholar

Wang, Z. C., K. Guo, H. Liu, C. J. Liu, Y. Geng, Z. Lu, B. Y. Jiao, and D. Y. Chen. 2020. “Effects of Bubble Size on the Gas-Liquid Mass Transfer of Bubble Swarms with Sauter Mean Diameters of 0.38–4.88 Mm in a Co-Current Upflow Bubble Column.” Journal of Chemical Technology & Biotechnology 95 (11): 2853–67, doi:https://doi.org/10.1002/jctb.6445.Search in Google Scholar

Wu, W., B. Han, H. Gao, Z. Liu, T. Jiang, and J. Huang. 2004. “Desulfurization of Flue Gas: SO2 Absorption by an Ionic Liquid.” Angewandte Chemie International Edition 43 (18): 2415–7, https://doi.org/10.1002/anie.200353437.Search in Google Scholar PubMed

Xie, P.-F., L.-Q. Li, Z.-C. He, and C.-Q. Su. 2019. “Gas-Liquid Mass Transfer of Carbon Dioxide Capture by Magnesium Hydroxide Slurry in a Bubble Column Reactor.” Journal of Central South University 26 (6): 1592–606, https://doi.org/10.1007/s11771-019-4115-6.Search in Google Scholar

Yang, G. Q., B. Du, and L. Fan. 2007. “Bubble Formation and Dynamics in Gas–Liquid–Solid Fluidization—A Review.” Chemical Engineering Science 62 (1): 2–27, https://doi.org/10.1016/j.ces.2006.08.021.Search in Google Scholar

Yang, J., S. Y. Liu, L. P. Ma, S. Q. Zhao, H. P. Liu, Q. X. Dai, Y. C. Yang, C. H. Xu, X. Xin, X. Q. Zhang, and J. Y. Liu. 2020. “Mechanism Analysis of Carbide Slag Capture of CO2 via a Gas-Liquid-Solid Three-phase Fluidization System.” Journal of Cleaner Production 279: 123712.10.1016/j.jclepro.2020.123712Search in Google Scholar

You, Q., S. Y. Wu, Y. Q. Wu, S. Huang, J. S. Gao, J. X. Shang, X. J. Min, and H. A. Zheng. 2017. “Product Distributions and Characterizations for Integrated Mild-Liquefaction and Carbonization of Low Rank Coals.” Fuel Processing Technology 156: 54–61, doi:https://doi.org/10.1016/j.fuproc.2016.09.022.Search in Google Scholar

Zhang, J. Q., Z. S. Wang, T. Li, Z. Wang, S. Zhang, M. Zhong, Y. E. Liu, and X. Z. Gong. 2019. “Preparation of CaO-Containing Carbon Pellet from Recycling of Carbide Slag: Effects of Temperature and H3PO4.” Waste Management 84: 64–73, doi:https://doi.org/10.1016/j.wasman.2018.11.033.Search in Google Scholar PubMed

Zhao, S., L. Ma, J. Yang, D. Zheng, H. Liu, and J. Yang. 2017. “Mechanism of CO2 Capture Technology Based on the Phosphogypsum Reduction Thermal Decomposition Process.” Energy & Fuels 31 (9): 9824–32, https://doi.org/10.1021/acs.energyfuels.7b01673.Search in Google Scholar

Zhou, Y. F., P. X. Kang, Z. L. Huang, P. Yan, J. Y. Sun, J. D. Wang, and Y. R. Yang. 2020. “Experimental Measurement and Theoretical Analysis on Bubble Dynamic Behaviors in a Gas-Liquid Bubble Column.” Chemical Engineering Science 211: 115295, doi:https://doi.org/10.1016/j.ces.2019.115295.Search in Google Scholar

Zhu, H. Z., A. L. Valdivieso, J. B. Zhu, F. F. Min, S. X. Song, D. Q. Huang, and S. M. Shao. 2018. “Effect of Dodecylamine-Frother Blend on Bubble Rising Characteristics.” Powder Technology 338: 586–90, doi:https://doi.org/10.1016/j.powtec.2018.07.031.Search in Google Scholar

Ziegenhein, T., and D. Lucas. 2017. “Observations on Bubble Shapes in Bubble Columns under Different Flow Conditions.” Experimental Thermal and Fluid Science 85: 248–56, https://doi.org/10.1016/j.expthermflusci.2017.03.009.Search in Google Scholar

Zingaretti, D., G. Costa, and R. Baciocchi. 2014. “Assessment of Accelerated Carbonation Processes for CO2 Storage Using Alkaline Industrial Residues.” Industrial & Engineering Chemistry Research 53 (22): 9311–24, https://doi.org/10.1021/ie403692h.Search in Google Scholar

Zukoski, E. E. 1966. “Influence of Viscosity, Surface Tension, and Inclination Angle on Motion of Long Bubbles in Closed Tubes.” Journal of Fluid Mechanics Digital Archive 25 (4): 821–37, https://doi.org/10.1017/s0022112066000442.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ijcre-2021-0204).


Received: 2021-08-05
Accepted: 2021-11-25
Published Online: 2021-12-17

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2021-0204/html
Scroll to top button