Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 7, 2022

Tuning parameters for the synthesis of MIL-53(Al): Mn doped MIL-53(Al) as a high potential catalyst for methanol dehydration

  • Nasrin Kazemzadeh , Rouein Halladj EMAIL logo , Sima Askari and Raza Kia

Abstract

Recently, many studies are dealing with developments of Metal-Organic Frameworks (MOFs), especially MIL-53(Al), which shows high thermal and mechanical stability. Among these, optimizing the synthesis condition of MIL-53(Al) to obtain appropriate characteristics has attracted much attention in academia and the industry. Here, the effect of synthesis time and ligand to metal molar ratio on the hydrothermal synthesis of MIL-53(Al) are pursued. The synthesized MIL-53(Al) samples are characterized by X-ray diffraction (XRD), the Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), thermal gravimetric analysis (TGA), and nitrogen adsorption-desorption technique (BET). The present study shows that MIL-53(Al) can be conventionally synthesized with a high yield within a shorter reaction time than the previous studies. Furthermore, the catalytic activity of the optimized MIL-53(Al) in the pure and Mn-doped form is studied in a methanol dehydration reaction. It is thus inferred that this popular MOF in the Mn/MIL-53(Al) form has a high activity and DME selectivity during methanol conversion. Our present results confirm the merits of employing the MIL-53(Al) as a catalyst in methanol to DME conversion, which can be an avenue for the practical application of acidic catalyst.


Corresponding author: Rouein Halladj, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdelhamid, H. N., M. N. Goda, and A. E.-A. A. Said. 2020. “Selective Dehydrogenation of Isopropanol on Carbonized Metal-Organic Frameworks.” Nano-Structures & Nano-Objects 24: 100605, https://doi.org/10.1016/j.nanoso.2020.100605.Search in Google Scholar

Aghamohammadi, S., M. Haghighi, and M. Charghand. 2014. “Methanol Conversion to Light Olefins Over Nanostructured CeAPSO-34 Catalyst: Thermodynamic Analysis of Overall Reactions and Effect of Template Type on Catalytic Properties and Performance.” Materials Research Bulletin 50: 462–75, https://doi.org/10.1016/j.materresbull.2013.11.014.Search in Google Scholar

Aloise, A., A. Marino, F. Dalena, G. Giorgianni, M. Migliori, L. Frusteri, C Cannilla, G. Bonura, F. Frusteri, and G. Giordano. 2020. “Desilicated ZSM-5 Zeolite: Catalytic Performances Assessment in Methanol to DME Dehydration.” Microporous and Mesoporous Materials 302: 110198, doi:https://doi.org/10.1016/j.micromeso.2020.110198.Search in Google Scholar

Askari, S., R. Halladj, and M. Sohrabi. 2012. “Methanol Conversion to Light Olefins Over Sonochemically Prepared SAPO-34 Nanocatalyst.” Microporous and Mesoporous Materials 163: 334–42, https://doi.org/10.1016/j.micromeso.2012.07.041.Search in Google Scholar

Boutin, A., F.-X. Coudert, M.-A. Springuel-Huet, A. V Neimark, G. Férey, and A. H. Fuchs. 2010. “The Behavior of Flexible MIL-53 (Al) Upon CH4 and CO2 Adsorption.” Journal of Physical Chemistry C 114 (50): 22237–44, https://doi.org/10.1021/jp108710h.Search in Google Scholar

Bourguiba, M., Z. Raddaoui, M. Chafra, and J. Dhahri. 2019. “The Investigation of Structural and Vibrational Properties and Optical Behavior of Ti-Doped La0.67Ba0.25Ca0.08Mn (1−TixO3 (x = 0.00, 0.05 and 0.10) Manganites.” RSC Advances 9 (72): 42252–61, https://doi.org/10.1039/c9ra07407d.Search in Google Scholar PubMed PubMed Central

Bakhtyari, A., and M. R. Rahimpour. 2017. “Methanol to Dimethyl Ether.” In Methanol, edited by A. Basile, and F. Dalena, 281–311. Amsterdam: Elsevier.10.1016/B978-0-444-63903-5.00010-8Search in Google Scholar

Camacho, B. C. R., R. P. P. L. Ribeiro, I. A. A. C. Esteves, and J. P. B. Mota. 2015. “Adsorption Equilibrium of Carbon Dioxide and Nitrogen on the MIL-53 (Al) Metal Organic Framework.” Separation and Purification Technology 141: 150–9, https://doi.org/10.1016/j.seppur.2014.11.040.Search in Google Scholar

Chatterjee, A., A. K. Jana, and J. K. Basu. 2020. “A Novel Synthesis of MIL-53 (Al)@ SiO2: An Integrated Photocatalyst Adsorbent to Remove Bisphenol a from Wastewater.” New Journal of Chemistry 44 (43): 18892–905.10.1039/D0NJ03714ASearch in Google Scholar

Choi, J.-S., W.-J. Son, J. Kim, and W.-S. Ahn. 2008. “Metal-Organic Framework MOF-5 Prepared by Microwave Heating: Factors to Be Considered.” Microporous and Mesoporous Materials 116 (1–3): 727–31, https://doi.org/10.1016/j.micromeso.2008.04.033.Search in Google Scholar

Chen, D., K. Moljord, and A. Holmen. 2012. “A Methanol to Olefins Review: Diffusion, Coke Formation and Deactivation on SAPO Type Catalysts.” Microporous and Mesoporous Materials 164: 239–50, https://doi.org/10.1016/j.micromeso.2012.06.046.Search in Google Scholar

Chukanov, N. V., D. A. Varlamov, I. V. Pekov, N. V. Zubkova, A. V. Kasatkin, and S. N. Britvin. 2021. “Coupled Substitutions in Natural MnO (OH) Polymorphs: Infrared Spectroscopic Investigation.” Minerals 11 (9): 969, https://doi.org/10.3390/min11090969.Search in Google Scholar

Dagle, R. A., Y. Wang, E. G. Baker, and J. Hu. 2015. “Dimethyl Ether Production from Methanol and/or Syngas.” Patent No. US20070078285A1.Search in Google Scholar

Embrechts, H., M. Kriesten, M. Ermer, W. Peukert, M. Hartmann, and M. Distaso. 2020. “In Situ Raman and FTIR Spectroscopic Study on the Formation of the Isomers MIL-68 (Al) and MIL-53 (Al).” RSC Advances 10 (13): 7336–48, https://doi.org/10.1039/c9ra09968a.Search in Google Scholar PubMed PubMed Central

Férey, G., M. Latroche, C. Serre, F. Millange, T. Loiseau, and A. Percheron-Guégan. 2003. “Hydrogen Adsorption in the Nanoporous Metal-Benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53.” Chemical Communications 24: 2976–7.10.1039/B308903GSearch in Google Scholar PubMed

Fei, J., Z. Hou, B. Zhu, H. Lou, and X. Zheng. 2006. “Synthesis of Dimethyl Ether (DME) on Modified HY Zeolite and Modified HY Zeolite-Supported Cu–Mn–Zn Catalysts.” Applied Catalysis A: General 304: 49–54, https://doi.org/10.1016/j.apcata.2006.02.019.Search in Google Scholar

Goda, M. N., A. E.-A. A. Said, and H. N. Abdelhamid. 2021. “Highly Selective Dehydration of Methanol Over Metal-Organic Frameworks (MOFs)-Derived ZnO@ Carbon.” Journal of Environmental Chemical Engineering 9 (6): 106336, https://doi.org/10.1016/j.jece.2021.106336.Search in Google Scholar

Goda, M. N., H. N. Abdelhamid, and A. E.-A. A. Said. 2019. “Zirconium Oxide Sulfate-Carbon (ZrOSO4@C) Derived from Carbonized UiO-66 for Selective Production of Dimethyl Ether.” ACS Applied Materials and Interfaces 12 (1): 646–53, https://doi.org/10.1021/acsami.9b17520.Search in Google Scholar PubMed

Gharibi Kharaji, A., M. Beheshti, S. Tangestani‐nejad, O. Görke, and H. R. Godini. 2020. “Adjusting Acidity and Porosity of Al‐SBA‐15 Catalyst for Methanol to Dimethyl Ether Reaction.” Asia-Pacific Journal of Chemical Engineering 15 (6): e2541, https://doi.org/10.1002/apj.2541.Search in Google Scholar

Hadi, N., A. Niaei, S. R. Nabavi, A. Farzi, and M. Navaei Shirazi. 2014. “Development of a New Kinetic Model for Methanol to Propylene Process on Mn/H-ZSM-5 Catalyst.” Chemical and Biochemical Engineering Quarterly 28 (1): 53–63.Search in Google Scholar

Hamon, L., C. Serre, T. Devic, T. Loiseau, F. Millange, G. Férey, and G. De Weireld. 2009. “Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) Metal-Organic Frameworks at Room Temperature.” Journal of the American Chemical Society 131 (25): 8775–7, doi:https://doi.org/10.1021/ja901587t.Search in Google Scholar PubMed

Jamshidi, L., C. Barbosa, L. Nascimento, and J. R. Rodbari. 2013. “Catalytic Dehydration of Methanol to Dimethyl Ether (DME) Using the Al62, 2Cu25, 3Fe12, 5 Quasicrystalline Alloy.” Journal of Chemical Engineering & Process Technology 4: 164.Search in Google Scholar

Jun, K. W., H. S. Lee, H. S. Roh, and S. E. Park. 2002. “Catalytic Dehydration of Methanol to Dimethyl Ether (DME) over Solid-Acid Catalysts.” Bulletin of the Korean Chemical Society 23 (6): 803–6.10.5012/bkcs.2002.23.6.803Search in Google Scholar

Khan, M. R., S. Harp, J. Neumann, and Q. N. Sultana. 2016. “Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption.” Journal of Materials Engineering and Performance 25 (4): 1276–83.10.1007/s11665-016-1966-ySearch in Google Scholar

Karam, L., J. Reboul, S. Casale, P. Massiani, and N. El Hassan. 2020. “Porous Nickel-Alumina Derived from Metal-Organic Framework (MIL-53): A New Approach to Achieve Active and Stable Catalysts in Methane Dry Reforming.” ChemCatChem 12 (1): 373–85, https://doi.org/10.1002/cctc.201901278.Search in Google Scholar

Khandan, N., M. Kazemeyni, and M. Aghaziarati. 2009. “Dehydration of Methanol to Dimethyl Ether Employing Modified H-ZSM-5 Catalysts.”Search in Google Scholar

Kim, H.-S., S.-G. Lee, Y.-H. Kim, D.-H. Lee, J.-B. Lee, and C.-S. Park. 2013. “Improvement of Lifetime Using Transition Metal-Incorporated SAPO-34 Catalysts in Conversion of Dimethyl Ether to Light Olefins.” Journal of Nanomaterials 2013: 4, https://doi.org/10.1155/2013/679758.Search in Google Scholar

Lee, Y.-R., J. Kim, and W.-S. Ahn. 2013. “Synthesis of Metal-Organic Frameworks: A Mini Review.” Korean Journal of Chemical Engineering 30 (9): 1667–80, https://doi.org/10.1007/s11814-013-0140-6.Search in Google Scholar

Li, Q., S. Jiang, S. Ji, M. Ammar, Q. Zhang, and J. Yan. 2015. “Synthesis of Magnetically Recyclable ZIF-8@ SiO2@ Fe3O4 Catalysts and Their Catalytic Performance for Knoevenagel Reaction.” Journal of Solid State Chemistry 223: 65–72, https://doi.org/10.1016/j.jssc.2014.06.017.Search in Google Scholar

Liu, D., C. Yao, J. Zhang, D. Fang, and D. Chen. 2011. “Catalytic Dehydration of Methanol to Dimethyl Ether over Modified γ-Al2O3 Catalyst.” Fuel 90 (5): 1738–42, https://doi.org/10.1016/j.fuel.2011.01.038.Search in Google Scholar

Liu, F., J. Cao, Zh. Yang, W. Xiong, Zh. Xu, P. Song, M. Jia, S. Sun, Y. Zhang, and X. Zhong. 2021. “Heterogeneous Activation of Peroxymonosulfate by Cobalt-Doped MIL-53 (Al) for Efficient Tetracycline Degradation in Water: Coexistence of Radical and Non-Radical Reactions.” Journal of Colloid and Interface Science 581: 195–204, doi:https://doi.org/10.1016/j.jcis.2020.07.100.Search in Google Scholar PubMed

Liu, L., W. Huang, Z. Gao, and L. Yin. 2010. “The Dehydration of Methanol to Dimethyl Ether Over a Novel Slurry Catalyst.” Energy Sources, Part A: Recovery, Utilization and Environmental Effects 32 (15): 1379–87, https://doi.org/10.1080/15567030903030724.Search in Google Scholar

Liu, J., F. Zhang, X. Zou, G. Yu, N. Zhao, S. Fan, and G. Zhu. 2013. “Environmentally Friendly Synthesis of Highly Hydrophobic and Stable MIL-53 MOF Nanomaterials.” Chemical Communications 49 (67): 7430–2, doi:https://doi.org/10.1039/c3cc42287a.Search in Google Scholar PubMed

Loiseau, T., Ch. Serre, C. Huguenard, G Fink, F. Taulelle, M. Henry, T. Bataille, and G. Férey. 2004. “A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL‐53) Upon Hydration.” Chemistry – A European Journal 10 (6): 1373–82, doi:https://doi.org/10.1002/chem.200305413.Search in Google Scholar PubMed

Magzoub, F., X. Li, S. Lawson, F. Rezaei, and A. A. Rownaghi. 2020. “3D-printed HZSM-5 and 3D-HZM5@ SAPO-34 Structured Monoliths with Controlled Acidity and Porosity for Conversion of Methanol to Dimethyl Either.” Fuel 280: 118628, https://doi.org/10.1016/j.fuel.2020.118628.Search in Google Scholar

Mihaylov, M., S. Andonova, K. Chakarova, A. Vimont, E. Ivanova, N. Drenchev, and K. Hadjiivanov. 2015. “An Advanced Approach for Measuring Acidity of Hydroxyls in Confined Space: a FTIR Study of Low-Temperature CO and 15N2 Adsorption on MOF Samples from the MIL-53 (Al) Series.” Physical Chemistry Chemical Physics 17 (37): 24304–14, doi:https://doi.org/10.1039/c5cp04139b.Search in Google Scholar PubMed

Mihaylov, M., K. Chakarova, S. Andonova, N. Drenchev, E. Ivanova, A. Sabetghadam, B. Seoane, J. Gascón, F. Kapteijn, and K. Hadjiivanov. 2016. “Adsorption Forms of CO2 on MIL-53 (Al) and NH2-MIL-53 (Al) as Revealed by FTIR Spectroscopy.” Journal of Physical Chemistry C 120 (41): 23584–95, doi:https://doi.org/10.1021/acs.jpcc.6b07492.Search in Google Scholar

Mulyati, T. A., R. Ediati, and A. Rosyidah. 2015. “Influence of Solvothermal Temperatures and Times on Crystallinity and Morphology of MOF-5.” Indonesian Journal of Chemistry 15 (2): 101–7, https://doi.org/10.22146/ijc.21202.Search in Google Scholar

Patil, D. V., P. B. S. Rallapalli, G. P. Dangi, R. J. Tayade, R. S. Somani, and H. C. Bajaj. 2011. “MIL-53 (Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions.” Industrial & Engineering Chemistry Research 50 (18): 10516–24, https://doi.org/10.1021/ie200429f.Search in Google Scholar

Qian, X., B. Yadian, R. Wu, Y. Long, K. Zhou, B. Zhu, and Y. Huang. 2013. “Structure Stability of Metal-Organic Framework MIL-53 (Al) in Aqueous Solutions.” International Journal of Hydrogen Energy 38 (36): 16710–5, doi:https://doi.org/10.1016/j.ijhydene.2013.07.054.Search in Google Scholar

Qian, X., Z. Zhong, B. Yadian, J. Wu, K. Zhou, J. S.-K. Teo, L. Chen, Y. Long, and Y. Huang. 2014. “Loading MIL-53 (Al) with Ag Nanoparticles: Synthesis, Structural Stability and Catalytic Properties.” International Journal of Hydrogen Energy 39 (26): 14496–502, doi:https://doi.org/10.1016/j.ijhydene.2013.11.052.Search in Google Scholar

Rahmani, E., and M. Rahmani. 2017. “Al-Based MIL-53 Metal Organic Framework (MOF) as the New Catalyst for Friedel–Crafts Alkylation of Benzene.” Industrial & Engineering Chemistry Research 57 (1): 169–78, https://doi.org/10.1021/acs.iecr.7b04206.Search in Google Scholar

Rallapalli, P., K. P. Prasanth, D. Patil, R. S. Somani, R. V Jasra, and H. C. Bajaj. 2011. “Sorption Studies of CO2, CH4, N2, CO, O2 and Ar on Nanoporous Aluminum Terephthalate [MIL-53 (Al)].” Journal of Porous Materials 18 (2): 205–10, https://doi.org/10.1007/s10934-010-9371-7.Search in Google Scholar

Rashidi, H., T. Hamoule, M. Reza, K. Nikou, and A. Shariati. 2013. “DME Synthesis over MSU-S Catalyst Through Methanol Dehydration Reaction.” The Iranian Journal of Oil & Gas Science and Technology 2 (4): 67–73.Search in Google Scholar

Ravon, U., G. Chaplais, C. Chizallet, B. Seyyedi, F. Bonino, S. Bordiga, N. Bats, and D. Farrusseng. 2010. “Investigation of Acid Centers in MIL‐53 (Al, Ga) for Brønsted‐Type Catalysis: In Situ FTIR and Ab Initio Molecular Modeling.” ChemCatChem 2 (10): 1235–8, doi:https://doi.org/10.1002/cctc.201000055.Search in Google Scholar

Schiffino, R. S., and R. P. Merrill. 1993. “A Mechanistic Study of the Methanol Dehydration Reaction on Gamma-Alumina Catalyst.” Journal of Physical Chemistry 97 (24): 6425–35, https://doi.org/10.1021/j100126a017.Search in Google Scholar

Soltanali, S., R. Halladj, A. Rashidi, M. Bazmi, and F. Bahadoran. 2016. “The Effect of HZSM-5 Catalyst Particle Size on Kinetic Models of Methanol to Gasoline Conversion.” Chemical Engineering Research and Design 106: 33–42, https://doi.org/10.1016/j.cherd.2015.12.004.Search in Google Scholar

Soltanali, S., R. Halladj, A. Rashidi, and Z. Hajjar. 2017. “The Effect of HZSM-5 Catalyst Particle Size on Gasoline Selectivity in Methanol to Gasoline Conversion Process.” Powder Technology 320: 696–702, https://doi.org/10.1016/j.powtec.2017.07.096.Search in Google Scholar

Tan, H., Y. Zhou, Y. Yan, W. Hu, X. Shi, Z. Tan, L. Tian, and Y. Zheng. 2017. “Preparation of Cerium Doped Cu/MIL-53 (Al) Catalyst and its Catalytic Activity in CO Oxidation Reaction.” Journal of Wuhan University of Technology Materials Science Edition 32 (1): 23–8, doi:https://doi.org/10.1007/s11595-017-1551-8.Search in Google Scholar

Tezerjani, A. A., R. Halladj, and S. Askari. 2021. “Different View of Solvent Effect on the Synthesis Methods of Zeolitic Imidazolate Framework-8 to Tuning the Crystal Structure and Properties.” RSC Advances 11 (32): 19914–23.10.1039/D1RA02856ASearch in Google Scholar PubMed PubMed Central

Vakili, R., and R. Eslamloueyan. 2013. “Design and Optimization of a Fixed Bed Reactor for Direct Dimethyl Ether Production from Syngas Using Differential Evolution Algorithm.” International Journal of Chemical Reactor Engineering 11 (1): 147–58, https://doi.org/10.1515/ijcre-2012-0026.Search in Google Scholar

Venna, S. R., J. B. Jasinski, and M. A. Carreon. 2010. “Structural Evolution of Zeolitic Imidazolate Framework-8.” Journal of the American Chemical Society 132 (51): 18030–3, https://doi.org/10.1021/ja109268m.Search in Google Scholar PubMed

Wang, Z., M. Babucci, Y. Zhang, Y. Wen, L. Peng, B. Yang, B. Gates, and D. Yang. 2020. “Dialing in Catalytic Sites on Metal Organic Framework Nodes: MIL-53 (Al) and MIL-68 (Al) Probed with Methanol Dehydration Catalysis.” ACS Applied Materials and Interfaces 12 (47): 53537–46, doi:https://doi.org/10.1021/acsami.0c16559.Search in Google Scholar PubMed

Yan, J., S. Jiang, S. Ji, D. Shi, and H. Cheng. 2015. “Metal-organic Framework MIL-53 (Al): Synthesis, Catalytic Performance for the Friedel-Crafts Acylation, and Reaction Mechanism.” Science China Chemistry 58 (10): 1544–52, https://doi.org/10.1007/s11426-015-5359-0.Search in Google Scholar

Yaripour, F., M. Mollavali, S. M. Jam, and H. Atashi. 2009. “Catalytic Dehydration of Methanol to Dimethyl Ether Catalyzed by Aluminum Phosphate Catalysts.” Energy & Fuels 23 (4): 1896–900, https://doi.org/10.1021/ef800856c.Search in Google Scholar

Zeng, L., Y. Wang, J. Mou, F. Liu, C. Yang, T. Zhao, X. Wang, and J. Cao. 2020. “Promoted Catalytic Behavior over γ-Al2O3 Composited with ZSM-5 for Crude Methanol Conversion to Dimethyl Ether.” International Journal of Hydrogen Energy 45 (33): 16500–8, doi:https://doi.org/10.1016/j.ijhydene.2020.04.115.Search in Google Scholar

Received: 2021-10-06
Accepted: 2022-02-18
Published Online: 2022-03-07

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2021-0250/html
Scroll to top button