Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 30, 2022

Analysis of nozzle clogging position in a continuous casting mold

  • Li Jinbo , Zhang Tao EMAIL logo , Gao Fubin , Gong Yankun and Zhou Dan

Abstract

In this paper, the flow field of the submerged entry nozzle (SEN) in the continuous casting process is analyzed in detail by numerical simulation. It is found that the front and rear positions of the SEN outlets and the bottom of the nozzle are prone to the accumulation of inclusions. Compared with the actual SEN, the clogging positions with the simulated results are consistent. The composition of nozzle nodules at two different positions is analyzed by scanning electron microscope (SEM), and the inclusions are alumina. The changes in molten steel level characteristics in the mold without and after clogging are compared and analyzed. It is found that the velocity of molten steel near the surface with nozzle clogging reaches 0.483 m/s, the free level fluctuation value of molten steel is 8.9 mm, which is easy to cause steel defects.


Corresponding author: Zhang Tao, Hansteel Co. Ltd., HBIS Group, Handan 056000, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Barati, H., M. Wu, A. Kharicha, and A. Ludwig. 2019. Metallurgical and Materials Transactions B 50: 1428.https://doi.org/10.1007/s11663-019-01551-x.Search in Google Scholar

Barati, H., M. Wu, A. Kharicha, and A. Ludwig. 2020. Steel Research International 91. 2000230.https://doi.org/10.1002/srin.202000230.Search in Google Scholar

Choudhary, S. K., and S. Chandra. 2007. ISIJ International 47: 190.https://doi.org/10.2355/isijinternational.47.190.Search in Google Scholar

Cui, H., Y. P. Bao, M. Wang, and W. S. Wu. 2010. International Journal of Minerals, Metallurgy and Materials 17: 154.https://doi.org/10.1007/s12613-010-0206-y.Search in Google Scholar

Dorrer, P., S. K. Michelic, C. Bernhard, and A. Penz. 2019. Steel Research International 90. 1800635.https://doi.org/10.1002/srin.201800635.Search in Google Scholar

Devi, S., R. K. Singh, N. Sen, and N. Pradhan. 2020. Materials Science Forum 978: 12.https://doi.org/10.4028/www.scientific.net/msf.978.12.Search in Google Scholar

Fukuda, Y., Y. Ueshima, and S. Mizoguchi. 1992. ISIJ International 32: 164.https://doi.org/10.2355/isijinternational.32.164.Search in Google Scholar

Girase, N., S. Basu, and S. K. Choudhary. 2007. Ironmaking and Steelmaking 34: 506–12.https://doi.org/10.1179/174328107x168075.Search in Google Scholar

Hua, C. J., Y. P. Bao, and M. Wang. 2021. Powder Technology 393: 405, https://doi.org/10.1016/j.powtec.2021.07.070.Search in Google Scholar

Hua, C. J., M. Wang, and Y. P. Bao. 2020. Metallurgical and Materials Transactions B 51: 2871.https://doi.org/10.1007/s11663-020-01996-5.Search in Google Scholar

Hashimoto, Y., A. Matsui, T. Hayase, and M. Kano. 2020. Metallurgical and Materials Transactions B 51: 581.https://doi.org/10.1007/s11663-020-01775-2.Search in Google Scholar

Hakamura, H., and S. Kohira. 1992. 75th Steelmak. Conf. Proce., 409. Toronto.Search in Google Scholar

Long, M. J., X. J. Zou, L. F. Zhang, and D. F. Chen. 2010. ISIJ International 50: 712.https://doi.org/10.2355/isijinternational.50.712.Search in Google Scholar

Rackers, K. G., and B. G. Thomas. 1995. 75th Steelmak. Conf. Proce., 296. Warrendale, PA.Search in Google Scholar

Srinivas, P. S., A. Singh, J. M. Korath, and A. Jana. 2016. Ironmaking & Steelmaking 44: 473.https://doi.org/10.1080/03019233.2016.1215948.Search in Google Scholar

Sasai, K., and Y. Mizhukami. 1994. ISIJ International 34: 802.https://doi.org/10.2355/isijinternational.34.802.Search in Google Scholar

Sasai, K., and Y. Mizukami. 2001. ISIJ International 41: 1331.https://doi.org/10.2355/isijinternational.41.1331.Search in Google Scholar

Vermeulen, Y., B. Coletti, P. Wollants, B. Blanpain, and F. Haers. 2000. Steel Research International 71: 391.https://doi.org/10.1002/srin.200001334.Search in Google Scholar

Wang, R. Z., J. Yang, and J. J. Zhi. 2012. Bao Steel Technology 5: 13.Search in Google Scholar

Wilson, F. G., M. J. Heesom, A. Nicholson, and A. W. Hills. 1987. Ironmaking and Steelmaking 14: 296.Search in Google Scholar

Yu, J. K., X. Yang, Z. Y. Liu, X. H. Hou, and Z. K. Yin. 2017. Ceramics International 43: 13025.https://doi.org/10.1016/j.ceramint.2017.06.133.Search in Google Scholar

Zhang, L., Y. Wang, and X. Zuo. 2008. Metallurgical and Materials Transactions B 39: 534.https://doi.org/10.1007/s11663-008-9154-6.Search in Google Scholar

Zhang, Z. G., Y. D. Liu, and W. Fu. 2010. Transactions of Materials and Heat Treatment 31: 69.https://doi.org/10.1016/j.matdes.2010.04.003.Search in Google Scholar

Zhou, X., X. Y. Yin, F. Fang, and J. Q. Jiang. 2011. Advanced Materials Research 217–218: 457.https://doi.org/10.4028/www.scientific.net/amr.217-218.457.Search in Google Scholar

Received: 2021-12-12
Accepted: 2022-03-06
Published Online: 2022-03-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2021-0291/html
Scroll to top button