Skip to main content
Log in

Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of an optimal investment and risk control problem for an insurer. The risky asset process and the insurance liability process are governed by stochastic differential equations with jumps and anticipative parameters. The insurer can only get access to partial information about the financial market and the insurance business to make decisions. Taking into account endogenous and exogenous factors, we assume the time horizon is uncertain. With the aim of expected logarithmic utility maximization, we adopt the forward stochastic calculus and the Malliavin calculus to derive a characterization of the optimal strategy. In some particular cases, we obtain the optimal strategies in closed-form and get some new insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanchet-Scalliet C, El Karoui N, Jeanblanc M, Martellini L (2008) Optimal investment decisions when time-horizon is uncertain. J Math Econ 44:1100–1113

    Article  MathSciNet  Google Scholar 

  • Bo L, Wang S (2017) Optimal investment and risk control for an insurer with stochastic factor. Oper Res Lett 45(3):259–265

    Article  MathSciNet  Google Scholar 

  • Bo L, Liao H, Wang Y (2019) Optimal credit investment and risk control for an insurer with regime-switching. Math Financ Econ 13:147–172

    Article  MathSciNet  Google Scholar 

  • Di Nunno G, Øksendal B (2009) Optimal portfolio, partial information and Malliavin calculus. Stochastics 81(3–4):303–322

    Article  MathSciNet  Google Scholar 

  • Di Nunno G, Øksendal B, Proske F (2009) Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, New York

    Book  Google Scholar 

  • Fouque JP, Papanicolaou A, Sircar R (2015) Filter and portfolio optimization with stochastic unobserved drift in asset returns. Commun Math Sci 13(4):935–953

    Article  MathSciNet  Google Scholar 

  • Fouque JP, Papanicolaou A, Sircar R (2017) Perturbation analysis for investment portfolios under partial information with expert opinions. SIAM J Control Optim 55(3):1534–1566

    Article  MathSciNet  Google Scholar 

  • Hakansson NH (1971) Optimal entrepreneurial decisions in a completely stochastic environment. Manage Sci 17:427–449

    Article  MathSciNet  Google Scholar 

  • Hata H, Kohatsu-Higa A (2013) A market model with medium/long-term effects due to an insider. Quantitative Finance 13(3):421–437

    Article  MathSciNet  Google Scholar 

  • Karatzas I, Wang H (2001) Utility maximization with discretionary stopping. SIAM J Control Optim 39:306–329

    Article  MathSciNet  Google Scholar 

  • Kharroubi I, Lim T, Ngoupeyou A (2013) Mean-variance hedging on uncertain time horizon in a market with a jump. Appl Math Optim 68:413–444

    Article  MathSciNet  Google Scholar 

  • Kohatsu-Higa A, Sulem A (2006) Utility maximization in an insider influenced market. Math Financ 16(1):153–179

    Article  MathSciNet  Google Scholar 

  • Lakner P (1998) Optimal trading strategy for an investor: the case of partial information. Stochastic Processes and Their Applications 76:77–97

    Article  MathSciNet  Google Scholar 

  • Lv S, Wu Z, Yu Z (2016) Continuous-time mean-variance portfolio selection with random horizon in an incomplete market. Automatica 69:176–180

    Article  MathSciNet  Google Scholar 

  • Merton RC (1971) Optimal consumption and portfolio rules in a continuous-time model. Journal of Economic Theory 3:373–413

    Article  MathSciNet  Google Scholar 

  • Nualart D, Nualart E (2018) Introduction to Malliavin Calculus. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Øksendal B, Sulem A (2004) Partial observation control in an anticipating environment. Russ Math Surv 59(2):355–375

    Article  MathSciNet  Google Scholar 

  • Papanicolou A (2019) Backward SDEs for control with partial information. Math Financ 29(1):208–248

    Article  MathSciNet  Google Scholar 

  • Peng X, Hu Y (2013) Optimal proportional reinsurance and investment under partial information. Insurance Math Econom 53:416–428

    Article  MathSciNet  Google Scholar 

  • Peng X, Wang W (2016) Optimal investment and risk control for an insurer under inside information. Insurance Math Econom 69:104–116

    Article  MathSciNet  Google Scholar 

  • Peng X, Chen F, Wang W (2018) Optimal investment and risk control for an insurer with partial information in an anticipating environment. Scand Actuar J 10:1–20

    MathSciNet  MATH  Google Scholar 

  • Peng X (2020) Expected utility maximization for an insurer with investment and risk control under inside information. Communications in statistics: theory and methods. https://doi.org/10.1080/03610926.2019.1682165

    Article  Google Scholar 

  • Peng X, Chen F (2021) Mean-variance asset-liability management with partial information and uncertain time horizon. Optimization 70(7):1609–1636

    Article  MathSciNet  Google Scholar 

  • Richard SF (1975) Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model. J Financ Econ 2:187–203

    Article  Google Scholar 

  • Xiong J, Zhou XY (2007) Mean-variance portfolio selection under partial information. SIAM J Control Optim 46:156–175

    Article  MathSciNet  Google Scholar 

  • Yaari M (1965) Uncertain lifetime, life insurance, and the theory of the consumer. Rev Econ Stud 2:137–150

    Article  Google Scholar 

  • Yao HX, Zeng Y, Chen SM (2013) Multi-period mean-variance asset-liability management with uncontrolled cash flow and uncertain time-horizon. Econ Model 30:492–500

    Article  Google Scholar 

  • Yu Z (2013) Continuous-time mean-variance portfolio selection with random horizon. Appl Math Optim 68:333–359

    Article  MathSciNet  Google Scholar 

  • Zou B, Cadenillas A (2014) Optimal investment and risk control policies for an insurer: Expected utility maximization. Insurance Math Econom 58:57–67

    Article  MathSciNet  Google Scholar 

  • Zou B, Cadenillas A (2017) Optimal investment and liability ratio policies in a multidimensional regime switching model. Risks 5(1):1–22

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editor and two anonymous referees for their valuable comments and suggestions, which leads to a significant improvement of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingchun Peng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (Nos. 11701436, 72004174) and the Fundamental Research Funds for the Central Universities (WUT: 3120621545).

Proof of Theorem 3.2

Proof of Theorem 3.2

Let \((\pi (s), \kappa (s))\) be an admissible strategy. By conditions (1) and (2) in Definition 2.1, we have

$$\begin{aligned} D_t^1\pi (s)=D_t^1\kappa (s)=D_t^2\kappa (s)=0, \end{aligned}$$
$$\begin{aligned} D_{t,z}^1\pi (s)=D_{t,z}^2\kappa (s)=0, \end{aligned}$$

for all \(t>s\). By the product rule and the chain rule for the Malliavin derivatives, we have

$$\begin{aligned} D_{s+}^1\left( \sigma (s)\pi (s)-q_1(s)\kappa (s)\right) =\pi (s)D_{s+}^1\sigma (s)-\kappa (s)D_{s+}^1q_1(s), \end{aligned}$$
$$\begin{aligned} D_{s+}^2\left( q_2(s)\kappa (s)\right) = \kappa (s)D_{s+}^2q_2(s), \end{aligned}$$
$$\begin{aligned}&D_{s+,z}^1\log (1+\pi (s)\gamma _1(s,z)) \nonumber \\&=\log \left( 1+\pi (s)\gamma _1(s,z)+D_{s+,z}^1(\pi (s)\gamma _1(s,z))\right) -\log (1+\pi (s)\gamma _1(s,z)) \nonumber \\&=\log \left( 1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z)\right) -\log (1+\pi (s)\gamma _1(s,z)), \end{aligned}$$

and

$$\begin{aligned}&D_{s+,z}^2\log (1-\kappa (s)\gamma _2(s,z)) \nonumber \\&=\log \left( 1-\kappa (s)\gamma _2(s,z)-D_{s+,z}^2(\kappa (s)\gamma _2(s,z))\right) -\log \left( 1-\kappa (s)\gamma _2(s,z)\right) \nonumber \\&=\log \left( 1-\kappa (s)\gamma _2(s,z)-\kappa (s)D_{s+,z}^2\gamma _2(s,z)\right) -\log \left( 1-\kappa (s)\gamma _2(s,z)\right) . \end{aligned}$$

Then by conditions (5) and (6) in Definition 2.1, Lemma 3.1, the Fubini theorem and the equalities above, we can deduce that

$$\begin{aligned}&E\bigg [\int _0^T\delta (t)\int _0^t(\sigma (s)\pi (s)-q_1(s)\kappa (s))d^-W_s^1dt\bigg ]\\&=\int _0^TE\bigg [\int _0^tD_s^1\delta (t)(\sigma (s)\pi (s)-q_1(s)\kappa (s))ds +\delta (t)\int _0^t\big (\pi (s)D_{s+}^1\sigma (s)-\kappa (s)D_{s+}^1q_1(s)\big )ds\bigg ]dt\\&=E\bigg [\int _0^T\bigg (\int _s^TD_s^1\delta (t)dt\cdot (\sigma (s)\pi (s)-q_1(s)\kappa (s))+\int _s^T\delta (t)dt\cdot \left( \pi (s)D_{s+}^1\sigma (s)-\kappa (s)D_{s+}^1q_1(s)\right) \bigg )ds\bigg ]\\&=E\bigg [\int _0^T\bigg [\Big (\sigma (s)\int _s^TD_s^1\delta (t)dt+D_{s+}^1\sigma (s)\cdot \int _s^T\delta (t)dt\Big )\pi (s)\\&\quad -\Big (q_1(s)\int _s^TD_s^1\delta (t)dt+D_{s+}^1q_1(s)\cdot \int _s^T\delta (t)dt\Big )\kappa (s)\bigg ]ds\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\int _0^T \delta (t)\int _0^tq_2(s)\kappa (s)d^-W_s^2dt\bigg ]\\&=\int _0^TE\bigg [\int _0^tD_s^2\delta (t)q_2(s)\kappa (s)ds+\delta (t)\int _0^t\kappa (s)D_{s+}^2q_2(s)ds\bigg ]dt\\&=E\bigg [\int _0^T\bigg (q_2(s)\int _s^TD_s^2\delta (t)dt+D_{s+}^2q_2(s)\int _s^T\delta (t)dt\bigg )\kappa (s)ds\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\log (1+\pi (s)\gamma _1(s,z))\tilde{N}^1(d^-s,dz)dt\bigg ]\\&=\int _0^TE\bigg [\int _0^t\int _{\mathbb R_0}D_{s,z}^1\delta (t)\Big (\log (1+\pi (s)\gamma _1(s,z))+D_{s+,z}^1\log (1+\pi (s)\gamma _1(s,z))\Big )v_1(dz)ds\\&\quad +\delta (t)\int _0^t\int _{\mathbb R_0}D_{s+,z}^1\log (1+\pi (s)\gamma _1(s,z))v_1(dz)ds\bigg ]dt\\&=\int _0^TE\bigg [\int _0^t\int _{\mathbb R_0}D_{s,z}^1\delta (t)\cdot \log (1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z))v_1(dz)ds\\&\quad +\delta (t)\int _0^t\int _{\mathbb R_0}\Big (\log (1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z))-\log (1+\pi (s)\gamma _1(s,z))\Big )v_1(dz)ds\bigg ]dt\\&=E\bigg [\int _0^T\int _{\mathbb R_0}\bigg (\int _s^TD_{s,z}^1\delta (t)dt+\int _s^T\delta (t)dt\bigg )\log (1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z)) v_1(dz)ds\bigg ]\\&\quad -E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\log (1+\pi (s)\gamma _1(s,z))v_1(dz)dsdt\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\log (1-\kappa (s)\gamma _2(s,z))\tilde{N}^2(d^-s,dz)dt\bigg ]\\&=E\bigg [\int _0^T\int _{\mathbb R_0}\bigg (\int _s^TD_{s,z}^2\delta (t)dt+\int _s^T\delta (t)dt\bigg ) \log \big (1-\kappa (s)\gamma _2(s,z)-\kappa (s)D_{s+,z}^2\gamma _2(s,z)\big )v_2(dz)ds\bigg ]\\&\quad -E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\log (1-\kappa (s)\gamma _2(s,z))v_2(dz)dsdt\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\bar{F}(T)\int _0^T(\sigma (s)\pi (s)-q_1(s)\kappa (s))d^-W_s^1\bigg ]\\&=E\bigg [\int _0^TD_s^1\bar{F}(T)\cdot (\sigma (s)\pi (s)-q_1(s)\kappa (s))ds\bigg ] +E\bigg [\bar{F}(T)\int _0^T\Big (\pi (s)D_{s+}^1\sigma (s)-\kappa (s)D_{s+}^1q_1(s)\Big )ds\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\bar{F}(T)\int _0^Tq_2(s)\kappa (s)d^-W_s^2\bigg ]\\&=E\bigg [\int _0^TD_s^2\bar{F}(T)q_2(s)\kappa (s)ds\bigg ]+E\bigg [\bar{F}(T)\int _0^T\kappa (s)D_{s+}^2q_2(s)ds\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\bar{F}(T)\int _0^T\int _{\mathbb R_0}\log (1+\pi (s)\gamma _1(s,z))\tilde{N}^1(d^-s,dz)\bigg ]\\&=E\bigg [\int _0^T\int _{\mathbb R_0}D_{s,z}^1\bar{F}(T)\Big (\log (1+\pi (s)\gamma _1(s,z))+D_{s+,z}^1\log (1+\pi (s)\gamma _1(s,z))\Big )v_1(dz)ds\\&\quad +\bar{F}(T)\int _0^T\int _{\mathbb R_0}D_{s+,z}^1\log (1+\pi (s)\gamma _1(s,z))v_1(dz)ds\bigg ]\\&=E\bigg [\int _0^T\int _{\mathbb R_0}D_{s,z}^1\bar{F}(T)\cdot \log (1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z))v_1(dz)ds\\&\quad +\bar{F}(T)\int _0^T\int _{\mathbb R_0}\Big (\log (1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z))-\log (1+\pi (s)\gamma _1(s,z))\Big )v_1(dz)ds\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\bar{F}(T)\int _0^T\int _{\mathbb R_0}\log (1-\kappa (s)\gamma _2(s,z))\tilde{N}^2(d^-s,dz)\bigg ]\\&=E\bigg [\int _0^T\int _{\mathbb R_0}D_{s,z}^2\bar{F}(T)\cdot \log (1-\kappa (s)\gamma _2(s,z)-\kappa (s)D_{s+,z}^2\gamma _2(s,z))v_2(dz)ds\\&\quad +\bar{F}(T)\int _0^T\int _{\mathbb R_0}\Big (\log (1-\kappa (s)\gamma _2(s,z)-\kappa (s)D_{s+,z}^2\gamma _2(s,z)) -\log (1-\kappa (s)\gamma _2(s,z))\Big )v_2(dz)ds\bigg ]. \end{aligned}$$

Moreover, by conditions (5) and (6) in Definition 2.1 and the Fubini theorem, we have

$$\begin{aligned}&E\bigg [\int _0^T\delta (t)\int _0^t\Big [(\mu (s)-r(s))\pi (s)+(\lambda (s)-p(s))\kappa (s)\\&-\frac{1}{2}(\sigma (s)\pi (s)-q_1(s)\kappa (s))^2 -\frac{1}{2}q_2^2(s)\kappa ^2(s)\Big ]dsdt\bigg ]\\&=E\bigg [\int _0^T\int _s^T\delta (t)dt\cdot \Big [(\mu (s)-r(s))\pi (s)+(\lambda (s)-p(s))\kappa (s)\\&\quad -\frac{1}{2}(\sigma (s)\pi (s)-q_1(s)\kappa (s))^2 -\frac{1}{2}q_2^2(s)\kappa ^2(s)\Big ]ds\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\big [\log (1+\pi (s)\gamma _1(s,z))-\pi (s)\gamma _1(s,z)\big ]v_1(dz)dsdt\bigg ]\\&=E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\log (1+\pi (s)\gamma _1(s,z))v_1(dz)dsdt\bigg ]\\&-E\bigg [\int _0^T\int _{\mathbb R_0}\int _s^T\delta (t)dt\cdot \pi (s)\gamma _1(s,z)v_1(dz)ds\bigg ], \end{aligned}$$
$$\begin{aligned}&E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\big [\log (1-\kappa (s)\gamma _2(s,z))+\kappa (s)\gamma _2(s,z)\big ]v_2(dz)dsdt\bigg ]\\&=E\bigg [\int _0^T\delta (t)\int _0^t\int _{\mathbb R_0}\log (1-\kappa (s)\gamma _2(s,z))v_2(dz)dsdt\bigg ]\\&-E\bigg [\int _0^T\int _{\mathbb R_0}\int _s^T\delta (t)dt\cdot \kappa (s)\gamma _2(s,z)v_2(dz)ds\bigg ]. \end{aligned}$$

From Eq. (1) and the equalities above, we obtain that

$$\begin{aligned}&E\bigg [\int _0^T\delta (t)J^u(t)dt+\bar{F}(T)J^u(T)\bigg ]\nonumber \\&=E\bigg [\int _0^T\bigg [\sigma (s)\Big (\int _s^TD_s^1\sigma (t)dt+D_s^1\bar{F}(T)\Big )\nonumber \\&\quad +\Big (\int _s^T\delta (t)dt+\bar{F}(T)\Big )\Big (\mu (s)-r(s)-\int _{\mathbb R_0}\gamma _1(s,z)v_1(dz)+D_{s+}^1\sigma (s)\Big )\bigg ]\pi (s)ds\bigg ]\nonumber \\&\quad +E\bigg [\int _0^T\bigg [-q_2(s)\Big (\int _s^TD_s^2\delta (t)dt+D_s^2\bar{F}(T)\Big )-q_1(s)\Big (\int _s^TD_s^1\delta (t)dt+D_s^1\bar{F}(T)\Big )\nonumber \\&\quad +\Big (\lambda (s)-p(s)+\int _{\mathbb R_0}\gamma _2(s,z)v_2(dz) -D_{s+}^2q_2(s)-D_{s+}^1q_1(s)\Big )\Big (\int _s^T\delta (t)dt+\bar{F}(T)\Big )\bigg ]\kappa (s)ds\bigg ]\nonumber \\&\quad +E\bigg [\int _0^T-\frac{1}{2}\Big (\int _s^T\delta (t)dt+\bar{F}(T)\Big )\Big [(\sigma (s)\pi (s)-q_1(s)\kappa (s))^2+q_2^2(s)\kappa ^2(s)\Big ]ds\bigg ]\nonumber \\&\quad +E\bigg [\int _0^T\int _{\mathbb R_0}\Big (\int _s^TD_{s,z}^1\delta (t)dt+\int _s^T\delta (t)dt +D_{s,z}^1\bar{F}(T)+\bar{F}(T)\Big )\nonumber \\&\quad \times \log \big (1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z)\big )v_1(dz)ds\bigg ]\nonumber \\&\quad +E\bigg [\int _0^T\int _{\mathbb R_0}\Big (\int _s^TD_{s,z}^2\delta (t)dt+\int _s^T\delta (t)dt +D_{s,z}^2\bar{F}(T)+\bar{F}(T)\Big )\nonumber \\&\quad \times \log \big (1-\kappa (s)\gamma _2(s,z)-\kappa (s)D_{s+,z}^2\gamma _2(s,z)\big )v_2(dz)ds\bigg ]\nonumber \\&=E\bigg [\int _0^TC_1(s)\pi (s)ds\bigg ]+E\bigg [\int _0^TC_2(s)\kappa (s)ds\bigg ]\nonumber \\&\quad -\frac{1}{2}E\bigg [\int _0^T\bar{F}(s)\Big [(\sigma (s)\pi (s)-q_1(s)\kappa (s))^2+q_2^2(s)\kappa ^2(s)\Big ]ds\bigg ]\nonumber \\&\quad +E\bigg [\int _0^T\int _{\mathbb R_0}B_1(s,z)\log \big (1+\pi (s)\gamma _1(s,z)+\pi (s)D_{s+,z}^1\gamma _1(s,z)\big )v_1(dz)ds\bigg ]\nonumber \\&\quad +E\bigg [\int _0^T\int _{\mathbb R_0}B_2(s,z)\log \big (1-\kappa (s)\gamma _2(s,z)-\kappa (s)D_{s+,z}^2\gamma _2(s,z)\big )v_2(dz)ds\bigg ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Li, B. & Peng, X. Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment. Methodol Comput Appl Probab 24, 635–659 (2022). https://doi.org/10.1007/s11009-022-09941-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-022-09941-6

Keywords

2010 Mathematics Subject Classification

Navigation