Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Cloning, Expression and Biochemical Characterization of the Recombinant α-amylase from Bacillus subtilis YX48

Author(s): Yan Shan , Junjie Shang *, Dongfang Zhang , Yinshan Cui , Yi Wang , Jie Zhu, Yongkai Ma, Pengfei Song , Kunhao Qin, Xiuling Ji, Yunlin Wei* and Lijun Wu

Volume 19, Issue 3, 2022

Published on: 11 January, 2022

Page: [218 - 225] Pages: 8

DOI: 10.2174/1570164618666210726161428

Price: $65

Abstract

Background: Amylase used in the market is mostly medium-temperature enzyme or high-temperature enzyme and has poor enzyme activity under low-temperature environment. Acid α-amylase can be used to develop digestion additives in the pharmaceutical and healthcare industries. The amino acid sequence and structural differences among α-amylases obtained from various organisms are high enough to confer interesting biochemical diversity to the enzymes. However, low- temperature (0-50°C) amylase, with an optimum temperature and heat sensitivity, has a greater potential value than medium (50-80°C) and high (80-110°C) temperature amylases.

Methodology: The gene amy48 from encoding extracellular α-amylase in Bacillus subtilis YX48 was successfully cloned into the pET30a (+) vector and expressed in Escherichia coli BL21 (DE3) for biochemical characterization.

Results and Conclusion: The molecular weight of α-amylase was 75 kDa. The activity of α-amylase was not affected by Ca2+, and Amy48 had the best activity at pH 5.0 and 37°C. AMY48 has high stability over a narrow pH and temperature range (5.0-8.0 and 30-45°C). Amylase activity was strongly inhibited by Zn2+, Mn2+, Cu2+, and Fe2+ ions, but Na+, K+, and Co2+ ions stimulate its activity slightly. The purified enzyme showed gradually reduced activity in the presence of detergents. However, it was remarkably stable against EDTA and urea.

Keywords: α-amylase, Bacillus subtilis, YX48, characterization, organic, solvents.

Graphical Abstract
[1]
Ibrahim, S.R.M.; Mohamed, G.A.; Khayat, M.T.; Ahmed, S.; Abo-Haded, H.; Alshali, K.Z. Mangostanaxanthone VIIII, a new xanthone from Garcinia mangostana pericarps, alpha-amylase inhibitory activity, and molecular docking studies. Braz. J. Pharmacogn., 2019, 29(2), 206-212.
[http://dx.doi.org/10.1016/j.bjp.2019.02.005]
[2]
Marmouzi, I. Pharmacological and chemical properties of some marine echinoderms. Braz. J. Pharmacogn., 2018, 28(5), 575-581.
[http://dx.doi.org/10.1016/j.bjp.2018.05.015]
[3]
de Souza, P.M.; de Oliveira Magalhães, P. Application of microbial α-amylase in industry - a review. Braz. J. Microbiol., 2010, 41(4), 850-861.
[http://dx.doi.org/10.1590/S1517-83822010000400004] [PMID: 24031565]
[4]
Li, Z.; Siepmann, F.B.; Rojas Tovar, L.E.; Chen, X.; Gänzle, M.G. Effect of copy number of the spoVA2mob operon, sourdough and reutericyclin on ropy bread spoilage caused by Bacillus spp. Food Microbiol., 2020, 91(Oct), 103507.
[http://dx.doi.org/10.1016/j.fm.2020.103507] [PMID: 32539950]
[5]
Ozdemir, S.; Fincan, S.A.; Karakaya, A.; Enez, B. A novel raw starch hydrolyzing thermostable alpha-amylase produced by newly isolated Bacillus mojavensis SO-10: Purification, characterization and usage in starch industries. Braz Arch Biol Techn, 2018, 61.
[6]
Valeriano, I.H.; Marques, G.L.L.; Freitas, S.P.; Couri, S.; Penha, E.M.; Gonçalves, M.M.M. Cassava pulp enzymatic hydrolysate as a promising feedstock for ethanol production. Braz. Arch. Biol. Technol., 2018, 61, e18161214.
[http://dx.doi.org/10.1590/1678-4324-2018161214]
[7]
Abd-Elaziz, A.M.; Karam, E.A.; Ghanem, M.M.; Moharam, M.E.; Kansoh, A.L. Production of a novel α-amylase by Bacillus atrophaeus NRC1 isolated from honey: Purification and characterization. Int. J. Biol. Macromol., 2020, 148, 292-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.120] [PMID: 31945438]
[8]
Mehta, D.; Satyanarayana, T. Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front. Microbiol., 2016, 7(Jul), 1129.
[http://dx.doi.org/10.3389/fmicb.2016.01129] [PMID: 27516755]
[9]
Cunha, J.R.B.; Santos, F.C.P.D.; Assis, F.G.D.V.D.; Leal, P.L. Cultivo de Penicillium spp. em resíduos da colheita de soja para produção de celulase, protease e amilase. Revista Ceres, 2016, 63(5), 597-604.
[http://dx.doi.org/10.1590/0034-737x201663050002]
[10]
Lu, M.S.; Fang, Y.W.; Li, H.Z.; Liu, H.F.; Wang, S.J. Isolation of a novel cold-adapted amylase-producing bacterium and study of its enzyme production conditions. Ann. Microbiol., 2010, 60(3), 557-563.
[http://dx.doi.org/10.1007/s13213-010-0090-8]
[11]
Pathak, A.P.; Rathod, M.G.; Mahabole, M.P.; Khairnar, R.S. Enhanced catalytic activity of Bacillus aryabhattai P1 protease by modulation with nanoactivator. Heliyon, 2020, 6(6), e04053.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04053]
[12]
Sanz-Penella, J.M.; Laparra, J.M.; Haros, M. Impact of α-amylase during breadmaking on in vitro kinetics of starch hydrolysis and glycaemic index of enriched bread with bran. Plant Foods Hum. Nutr., 2014, 69(3), 216-221.
[http://dx.doi.org/10.1007/s11130-014-0436-7] [PMID: 25074672]
[13]
Zeng, J.; Guo, J.; Tu, Y.; Yuan, L. Functional study of C-terminal domain of the thermoacidophilic raw starch-hydrolyzing α-amylase Gt-amy. Food Sci. Biotechnol., 2019, 29(3), 409-418.
[http://dx.doi.org/10.1007/s10068-019-00673-x] [PMID: 32257525]
[14]
Adhikari, A. Gastroprotective and digestive potential of an Ayurvedic asava–arishta preparation. Orient. Pharm. Exp. Med., 2018, 18(4), 391-401.
[http://dx.doi.org/10.1007/s13596-018-0325-y]
[15]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3]
[16]
Zhou, G.; Jin, M.; Cai, Y.; Zeng, R. Characterization of a thermostable and alkali-stable α-amylase from deep-sea bacterium Flammeovirga pacifica. Int. J. Biol. Macromol., 2015, 80, 676-682.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.042] [PMID: 26210035]
[17]
Sadiqa, A.; Gilani, S.R.; Anwar, A.; Mehboob, A.; Saleem, A.; Rubab, S. Biogenic fabrication, characterization and drug loaded antimicrobial assay of silver nanoparticles using centratherum anthalminticum (l.) kuntze. J. Pharmaceut. Sci., 2021, 110(5), 1969-1978.
[18]
Lim, S.J.; Hazwani-Oslan, S.N.; Oslan, S.N. Purification and characterisation of thermostable alpha-amylases from microbial sources. Bioresources, 2020, 15(1), 2005-2029.
[19]
Asoodeh, A.; Emtenani, S.; Emtenani, S.; Jalal, R.; Housaindokht, M.R. Molecular cloning and biochemical characterization of a thermoacidophilic, organic-solvent tolerant alpha-amylase from a Bacillus strain in Escherichia coli. J. Mol. Catal., B Enzym., 2014, 99, 114-120.
[http://dx.doi.org/10.1016/j.molcatb.2013.10.025]
[20]
Sharma, A.; Satyanarayana, T. Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis. Extremophiles, 2012, 16(3), 515-522.
[http://dx.doi.org/10.1007/s00792-012-0451-2] [PMID: 22527045]
[21]
Sajedi, R.H. A Ca-independent alpha-amylase that is active and stable at low pH from the Bacillus sp KR-8104. Enzyme Microb. Technol., 2005, 36(5-6), 666-671.
[http://dx.doi.org/10.1016/j.enzmictec.2004.11.003]
[22]
Baltas, N.; Dincer, B.; Ekinci, A.P.; Kolayli, S.; Adiguzel, A. Purification and characterization of extracellular a-amylase from a thermophilic Anoxybacillus thermarum A4 strain. Braz. Arch. Biol. Technol., 2016, 59, e16160346.
[http://dx.doi.org/10.1590/1678-4324-2016160346]
[23]
Hmidet, N.; Ali, N.E.H.; Haddar, A.; Kanoun, S.; Alya, S.K.; Nasri, M. Alkaline proteases and thermostable alpha-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem. Eng. J., 2009, 47(1-3), 71-79.
[http://dx.doi.org/10.1016/j.bej.2009.07.005]
[24]
Emtenani, S.; Asoodeh, A.; Emtenani, S. Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806. Int. J. Biol. Macromol., 2015, 72, 290-298.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.023] [PMID: 25168843]
[25]
Chen, J.; Chen, X.; Dai, J.; Xie, G.; Yan, L.; Lu, L.; Chen, J. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. Int. J. Biol. Macromol., 2015, 80, 200-207.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.018] [PMID: 26092061]
[26]
Jiang, T.; Cai, M.; Huang, M.; He, H.; Lu, J.; Zhou, X.; Zhang, Y. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp. Protein Expr. Purif., 2015, 114, 15-22.
[http://dx.doi.org/10.1016/j.pep.2015.06.002] [PMID: 26073094]
[27]
Abdel-Fattah, Y.R.; Soliman, N.A.; El-Touldiy, N.M.; El-Gendi, H.; Ahmed, R.S. Production, purification, and characterization of thermostable alpha-amylase produced by Bacillus licheniformis isolate AI20. J. Chem., 2013, 673173.
[http://dx.doi.org/10.1155/2013/673173]
[28]
Cordeiro, C.A M.; Martins, M.L.L.; Luciano, A.B. Production and properties of alpha-amylase from thermophilic Bacillus sp. Braz. J. Microbiol., 2002, 33(1), 57-61.
[http://dx.doi.org/10.1590/S1517-83822002000100012]
[29]
Violet, M.; Meunier, J. C. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem. J., 1989, 263(3), 665-670.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy