Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Simultaneously Determining Seven Second-Line Anti-TB Drugs by UHPLC- MS: Application for TDM in HIV-TB Patients

Author(s): Lin Yin , Yaru Xing, Xiaoqin Le, Jun Chen, Lin Zhang, Xiaofang Jia, Tao Sun, Yingying Li, Hongzhou Lu* and Lijun Zhang*

Volume 18, Issue 6, 2022

Published on: 19 January, 2022

Page: [598 - 607] Pages: 10

DOI: 10.2174/1573412918666211123112915

Price: $65

Abstract

Background: To optimize therapy for patients with human immunodeficiency virus-tuberculosis (HIV-TB) coinfection, we developed an ultra-high-performance liquid chromatography/- tandem mass spectrometry (UHPLC-MS) method to monitor seven second-line anti-tuberculosis drugs.

Methods: Blood samples (n = 70) were collected from 35 patients with HIV-TB coinfection; the plasma sample was protein-precipitated and diluted with a solution containing heptafluorobutyric acid. The plasma concentrations of rifabutin (RBT), clofazimine (CLO), moxifloxacin (MFX), prothionamide (PTH), levofloxacin (LFX), amikacin (AMK), and para-aminosalicylic acid (PAS) were detected by UHPLC-MS/MS method.

Results: In these 70 samples, the mean concentrations of RBT, CLO, MFX, PTH, LFX, and AMK were 173.8 (10.0–550.0), 61.1 (54.4–67.7), 646.6 (25.0–2480.0), 120.5 (50.0–597.0), 1565.9 (100.0–3480.0), and 10753.0 (400.0–76 700.0) μg/L, respectively. Only one sample was detected to have PAS with a concentration less than the lower limit of quantification. Most of the drug concentrations detected in these patients were lower than the targeted concentrations in TB patients.

Conclusion: We created a simple UHPLC-MS method for simultaneously quantifying anti-TB drugs. The plasma concentrations in HIV-TB co-infected patients were lower than the targeted concentrations. It is important to monitor anti-TB drugs in the future. This method will facilitate the monitoring of anti-TB drugs in the future.

Keywords: UHPLC-MS/MS, second-line anti-TB drugs, HIV-TB coinfection, drug-resistant tuberculosis, therapeutic drug monitoring, plasma.

Graphical Abstract
[1]
Tornheim, J.A.; Dooley, K.E. Challenges of TB and HIV co-treatment: Updates and insights. Curr. Opin. HIV AIDS, 2018, 13(6), 486-491.
[http://dx.doi.org/10.1097/COH.0000000000000495] [PMID: 30080683]
[2]
Denegetu, A.W.; Dolamo, B.L. HIV screening among TB patients and co-trimoxazole preventive therapy for TB/HIV patients in Addis Ababa: Facility based descriptive study. PLoS One, 2014, 9(2), e86614.
[http://dx.doi.org/10.1371/journal.pone.0086614] [PMID: 24498278]
[3]
Reynolds, J.; Heysell, S.K. Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin. Drug Metab. Toxicol., 2014, 10(6), 813-823.
[http://dx.doi.org/10.1517/17425255.2014.895813] [PMID: 24597717]
[4]
Kanters, S.; Socias, M.E.; Paton, N.I.; Vitoria, M.; Doherty, M.; Ayers, D.; Popoff, E.; Chan, K.; Cooper, D.A.; Wiens, M.O.; Calmy, A.; Ford, N.; Nsanzimana, S.; Mills, E.J. Comparative efficacy and safety of second-line antiretroviral therapy for treatment of HIV/AIDS: A systematic review and network meta-analysis. Lancet HIV, 2017, 4(10), e433-e441.
[http://dx.doi.org/10.1016/S2352-3018(17)30109-1] [PMID: 28784426]
[5]
Nabisere, R.; Musaazi, J.; Denti, P.; Aber, F.; Lamorde, M.; Dooley, K.E.; Aarnoutse, R.; Sloan, D.J.; Sekaggya-Wiltshire, C. Pharmacokinetics, SAfety/tolerability, and EFficacy of high-dose RIFampicin in tuberculosis-HIV co-infected patients on efavirenz- or dolutegravir-based antiretroviral therapy: study protocol for an open-label, phase II clinical trial (SAEFRIF). Trials, 2020, 21(1), 181.
[http://dx.doi.org/10.1186/s13063-020-4132-7] [PMID: 32054536]
[6]
Benator, D.A.; Weiner, M.H.; Burman, W.J.; Vernon, A.A.; Zhao, Z.A.; Khan, A.E.; Jones, B.E.; Sandman, L.; Engle, M.; Silva-Trigo, C.; Hsyu, P.H.; Becker, M.I.; Peloquin, C.A.; Tuberculosis Trials, C. Clinical evaluation of the nelfinavir-rifabutin interaction in patients with tuberculosis and human immunodeficiency virus infection. Pharmacotherapy, 2007, 27(6), 793-800.
[http://dx.doi.org/10.1592/phco.27.6.793] [PMID: 17542762]
[7]
Thee, S.; Garcia-Prats, A.J.; Draper, H.R.; McIlleron, H.M.; Wiesner, L.; Castel, S.; Schaaf, H.S.; Hesseling, A.C. Pharmacokinetics and safety of moxifloxacin in children with multidrug-resistant tuberculosis. Clin. Infect. Dis., 2015, 60(4), 549-556.
[http://dx.doi.org/10.1093/cid/ciu868] [PMID: 25362206]
[8]
Monedero, I.; Caminero, J.A. MDR-/XDR-TB management: What it was, current standards and what is ahead. Expert Rev. Respir. Med., 2009, 3(2), 133-145.
[http://dx.doi.org/10.1586/ers.09.6] [PMID: 20477307]
[9]
Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet, 2010, 375(9728), 1830-1843.
[http://dx.doi.org/10.1016/S0140-6736(10)60410-2] [PMID: 20488523]
[10]
Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; McHugh, T.D.; Wills, G.H.; Bateson, A.; Hunt, R.; Van Niekerk, C.; Li, M.; Olugbosi, M.; Spigelman, M.; Nix, T.B.T.T. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2020, 382(10), 893-902.
[http://dx.doi.org/10.1056/NEJMoa1901814] [PMID: 32130813]
[11]
Shah, I.; Poojari, V.; Meshram, H. Multi-drug resistant and extensively-drug resistant tuberculosis. Indian J. Pediatr., 2020, 87(10), 833-839.
[http://dx.doi.org/10.1007/s12098-020-03230-1] [PMID: 32103425]
[12]
Theron, G.; Peter, J.; Richardson, M.; Warren, R.; Dheda, K.; Steingart, K.R. GenoType((R)) MTBDRsl assay for resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst. Rev., 2016, 2016(9), CD010705.
[13]
Verbeeck, R.K.; Günther, G.; Kibuule, D.; Hunter, C.; Rennie, T.W. Optimizing treatment outcome of first-line anti-tuberculosis drugs: The role of therapeutic drug monitoring. Eur. J. Clin. Pharmacol., 2016, 72(8), 905-916.
[http://dx.doi.org/10.1007/s00228-016-2083-4] [PMID: 27305904]
[14]
Davies Forsman, L.; Niward, K.; Hu, Y.; Zheng, R.; Zheng, X.; Ke, R.; Cai, W.; Hong, C.; Li, Y.; Gao, Y.; Werngren, J.; Paues, J.; Kuhlin, J.; Simonsson, U.S.H.; Eliasson, E.; Alffenaar, J.W.; Mansjö, M.; Hoffner, S.; Xu, B.; Schön, T.; Bruchfeld, J. Plasma concentrations of second-line antituberculosis drugs in relation to minimum inhibitory concentrations in multidrug-resistant tuberculosis patients in China: A study protocol of a prospective observational cohort study. BMJ Open, 2018, 8(9), e023899.
[http://dx.doi.org/10.1136/bmjopen-2018-023899] [PMID: 30287613]
[15]
Hemanth Kumar, A.K.; Kumar, A.; Kannan, T.; Bhatia, R.; Agarwal, D.; Kumar, S.; Dayal, R.; Singh, S.P.; Ramachandran, G. Pharmacokinetics of second-line antituberculosis drugs in children with multidrug-resistant tuberculosis in India. Antimicrob. Agents Chemother., 2018, 62(5), e02410-17.
[http://dx.doi.org/10.1128/AAC.02410-17] [PMID: 29463539]
[16]
Beal, S.L. Ways to fit a PK model with some data below the quantification limit. J. Pharmacokinet. Pharmacodyn., 2001, 28(5), 481-504.
[http://dx.doi.org/10.1023/A:1012299115260] [PMID: 11768292]
[17]
Alsultan, A.; Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs, 2014, 74(8), 839-854.
[http://dx.doi.org/10.1007/s40265-014-0222-8] [PMID: 24846578]
[18]
Alffenaar, J.C.; Akkerman, O.W.; Kim, H.Y.; Tiberi, S.; Migliori, G.B. Precision and personalized medicine and anti-TB treatment: Is TDM feasible for programmatic use? Int. J. Infect. Dis., 2020, 92SS5-9.
[19]
O’Kelly, B.; Murtagh, R.; Lambert, J.S. Therapeutic drug monitoring of HIV antiretroviral drugs in pregnancy: A narrative review. Ther. Drug Monit., 2020, 42(2), 229-244.
[http://dx.doi.org/10.1097/FTD.0000000000000735] [PMID: 32004247]
[20]
Punyawudho, B.; Singkham, N.; Thammajaruk, N.; Dalodom, T.; Kerr, S.J.; Burger, D.M.; Ruxrungtham, K. Therapeutic drug monitoring of antiretroviral drugs in HIV-infected patients. Expert Rev. Clin. Pharmacol., 2016, 9(12), 1583-1595.
[http://dx.doi.org/10.1080/17512433.2016.1235972] [PMID: 27626677]
[21]
Niward, K.; Davies Forsman, L.; Bruchfeld, J.; Chryssanthou, E.; Carlström, O.; Alomari, T.; Carlsson, B.; Pohanka, A.; Mansjö, M.; Jonsson Nordvall, M.; Johansson, A.G.; Eliasson, E.; Werngren, J.; Paues, J.; Simonsson, U.S.H.; Schön, T. Distribution of plasma concentrations of first-line anti-TB drugs and individual MICs: A prospective cohort study in a low endemic setting. J. Antimicrob. Chemother., 2018, 73(10), 2838-2845.
[http://dx.doi.org/10.1093/jac/dky268] [PMID: 30124844]
[22]
Han, M.; Jun, S.H.; Lee, J.H.; Park, K.U.; Song, J.; Song, S.H. Method for simultaneous analysis of nine second-line anti-tuberculosis drugs using UPLC-MS/MS. J. Antimicrob. Chemother., 2013, 68(9), 2066-2073.
[http://dx.doi.org/10.1093/jac/dkt154] [PMID: 23657802]
[23]
Bolhuis, M.S.; Akkerman, O.W.; Sturkenboom, M.G.; de Lange, W.C.; van der Werf, T.S.; Alffenaar, J.C. Individualized treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring. Int. J. Mycobacteriol., 2016, 5, 44-45.
[24]
Dartois, V.; Barry, C.E. Clinical pharmacology and lesion penetrating properties of second- and third-line antituberculous agents used in the management of multidrug-resistant (MDR) and extensively-drug resistant (XDR) tuberculosis. Curr. Clin. Pharmacol., 2010, 5(2), 96-114.
[http://dx.doi.org/10.2174/157488410791110797] [PMID: 20156156]
[25]
Heysell, S.K.; Moore, J.L.; Peloquin, C.A.; Ashkin, D.; Houpt, E.R. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in Virginia, 2009-2014. Tuberc. Respir. Dis. (Seoul), 2015, 78(2), 78-84.
[http://dx.doi.org/10.4046/trd.2015.78.2.78] [PMID: 25861340]
[26]
Lee, K.; Jun, S.H.; Han, M.; Song, S.H.; Park, J.S.; Lee, J.H.; Park, K.U.; Song, J. Multiplex assay of second-line anti-tuberculosis drugs in dried blood spots using ultra-performance liquid chromatography-tandem mass spectrometry. Ann. Lab. Med., 2016, 36(5), 489-493.
[http://dx.doi.org/10.3343/alm.2016.36.5.489] [PMID: 27374716]
[27]
Lee, S.H.; Seo, K.A.; Lee, Y.M.; Lee, H.K.; Kim, J.H.; Shin, C.; Ghim, J.R.; Shin, J.G.; Kim, D.H. Low erum concentrations of moxifloxacin, prothionamide, and cycloserine on sputum conversion in multi-drug resistant TB. Yonsei Med. J., 2015, 56(4), 961-967.
[http://dx.doi.org/10.3349/ymj.2015.56.4.961] [PMID: 26069117]
[28]
Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs, 2002, 62(15), 2169-2183.
[http://dx.doi.org/10.2165/00003495-200262150-00001] [PMID: 12381217]
[29]
Boidin, C.; Jenck, S.; Bourguignon, L.; Torkmani, S.; Roussey-Jean, A.; Ledochowski, S.; Marry, L.; Ammenouche, N.; Dupont, H.; Marçon, F.; Allaouchiche, B.; Bohé, J.; Lepape, A.; Goutelle, S.; Friggeri, A. Determinants of amikacin first peak concentration in critically ill patients. Fundam. Clin. Pharmacol., 2018, 32(6), 669-677.
[http://dx.doi.org/10.1111/fcp.12374] [PMID: 29660162]
[30]
Daskapan, A.; Idrus, L.R.; Postma, M.J.; Wilffert, B.; Kosterink, J.G.W.; Stienstra, Y.; Touw, D.J.; Andersen, A.B.; Bekker, A.; Denti, P.; Hemanth Kumar, A.K.; Jeremiah, K.; Kwara, A.; McIlleron, H.; Meintjes, G.; van Oosterhout, J.J.; Ramachandran, G.; Rockwood, N.; Wilkinson, R.J.; van der Werf, T.S.; Alffenaar, J.C. A systematic review on the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin. Pharmacokinet., 2019, 58(6), 747-766.
[http://dx.doi.org/10.1007/s40262-018-0716-8] [PMID: 30406475]
[31]
Gurumurthy, P.; Ramachandran, G.; Hemanth Kumar, A.K.; Rajasekaran, S.; Padmapriyadarsini, C.; Swaminathan, S.; Bhagavathy, S.; Venkatesan, P.; Sekar, L.; Mahilmaran, A.; Ravichandran, N.; Paramesh, P. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob. Agents Chemother., 2004, 48(11), 4473-4475.
[http://dx.doi.org/10.1128/AAC.48.11.4473-4475.2004] [PMID: 15504887]
[32]
Ramachandran, G.; Kumar, A.K.; Kannan, T.; Bhavani, P.K.; Kumar, S.R.; Gangadevi, N.P.; Banurekha, V.V.; Sudha, V.; Venkatesh, S.; Ravichandran, N.; Kalpana, S.; Mathevan, G.; Sanjeeva, G.N.; Agarwal, D.; Swaminathan, S. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr. Infect. Dis. J., 2016, 35(5), 530-534.
[http://dx.doi.org/10.1097/INF.0000000000001069] [PMID: 26825153]
[33]
Zhu, M.; Burman, W.J.; Starke, J.R.; Stambaugh, J.J.; Steiner, P.; Bulpitt, A.E.; Ashkin, D.; Auclair, B.; Berning, S.E.; Jelliffe, R.W.; Jaresko, G.S.; Peloquin, C.A. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int. J. Tuberc. Lung Dis., 2004, 8(11), 1360-1367.
[PMID: 15581206]
[34]
Yang, H.; Enimil, A.; Gillani, F.S.; Antwi, S.; Dompreh, A.; Ortsin, A.; Adu Awhireng, E.; Owusu, M.; Wiesner, L.; Peloquin, C.A.; Kwara, A. Evaluation of the adequacy of the 2010 Revised World Health Organization recommended dosages of the first-line antituberculosis drugs for children: Adequacy of revised dosages of TB drugs for children. Pediatr. Infect. Dis. J., 2018, 37(1), 43-51.
[http://dx.doi.org/10.1097/INF.0000000000001687] [PMID: 28719501]
[35]
Jacobs, T.G.; Svensson, E.M.; Musiime, V.; Rojo, P.; Dooley, K.E.; McIlleron, H.; Aarnoutse, R.E.; Burger, D.M.; Turkova, A.; Colbers, A.; Group, W.H.O.P.A.W. Pharmacokinetics of antiretroviral and tuberculosis drugs in children with HIV/TB co-infection: A systematic review. J. Antimicrob. Chemother., 2020, 75(12), 3433-3457.
[http://dx.doi.org/10.1093/jac/dkaa328] [PMID: 32785712]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy