Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

QbD Approach For Anti-Cancer Drugs - A Review

Author(s): Sudarvizhi Thanigainathan*, Sangamithra Ramalingan, Subramanianainar Meyyanathan and Basavan Babu

Volume 18, Issue 3, 2022

Published on: 31 May, 2021

Page: [251 - 264] Pages: 14

DOI: 10.2174/1573412917666210531113243

Price: $65

Abstract

Abstract: Background: Several analytical approaches for assessing anti-cancer drugs in pharmaceutical formulations have been developed over the last few years. QbD plays an important role in establishing accurate analytical methods to analyze anti-cancer compounds. Quality by Design has become a risk analysis and a science-based strategy, implemented by experimental methods to optimize system output with known variables for data. The influence of highly complex and correlations of input variables on the output reactions of pharmaceutical drugs and empirical approaches have been widely used to explain the design of experiments.

Objectives: The efficiency of the anti-cancer drugs and their formulation in the various dosage forms has been made convenient with the help of QbD designs such as Plackett Burman, full factorial design, etc. QbD contains various steps, which help enhance and sustain the quality of the drug in its dosage form.

Conclusion: This review covers a basic, efficient, and accurate analytical approach technique using Quality by Design for anti-cancer drugs. Thus, an outline of the experimental methods used in anti-cancer drugs was identified and discussed.

Keywords: Anti-cancer drugs, QbD, experiments, factorial design, Box Behnken design, variables.

Next »
Graphical Abstract
[1]
Design Space in QbD - Definitions - Quality by Design for Biotech, Pharmaceutical and Medical Devices, 2014. Available from: https://qbdworks.com/design-space-in-qbd/
[2]
Moore, C.M. Quality by design—FDA lessons learned and challenges for international harmonization. International Conference on Drug Development, 2012.
[3]
Sangshetti, J.N.; Deshpande, M.; Zaheer, Z.; Shinde, D.B.; Arote, R. Quality by design approach: Regulatory need. Arab. J. Chem., 2017, 5, S3412-S3425.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.025]
[4]
Kamemura, N. Butylated hydroxytoluene, a food additive, modulates membrane potential and increases the susceptibility of rat thymocytes to oxidative stress. Comput. Toxicol., 2018, 6, 32-38.
[http://dx.doi.org/10.1016/j.comtox.2018.04.001]
[5]
Khuri, A.I. A general overview of response surface methodology. Biom Biostat Int J, 2017, 5, 87-93.
[http://dx.doi.org/10.15406/bbij.2017.05.00133]
[6]
Rathore, A.S.; Bhambure, R.; Ghare, V. Process analytical technology (PAT) for biopharmaceutical products. Anal. Bioanal. Chem., 2010, 398(1), 137-154.
[http://dx.doi.org/10.1007/s00216-010-3781-x] [PMID: 20480150]
[7]
European Medicines Agency (EMA). ICH Guideline Q9 on quality risk management., 2014. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002873.pdf
[8]
Services, H. Room 2201 Silver Spring. 2009. Available from: http://www.fda.gov/cder/guidance/index.htm http://www.fda.gov/cber/guidelines.htm
[9]
Kumar, P.R.; Dinesh, S.R.; Rini, R. LCMS—A review and a recent update. J. Pharm. Pharm. Sci., 2016, 3, 377-391.
[10]
Fukuda, I.M.; Pinto, C.F.; Moreira, C.D.; Saviano, A.M.; Lourenço, F.R. Design of Experiments (DoE) applied to pharmaceutical and analytical Quality by Design (QbD). Braz. J. Pharm. Sci., 2018, 54.
[http://dx.doi.org/10.1590/s2175-97902018000001006]
[11]
Freddi, A.; Salmon, M. Design of experiment. InDesign Principles and Methodologies; Springer: Cham, 2019, pp. 127-158.
[http://dx.doi.org/10.1007/978-3-319-95342-7_6]
[12]
Design of Experiment With Example [Steps for Conducting DOE]. Available from: https://www.knowledgehut.com/tutorials/project-management/design-of-experiment
[15]
Antony, J. Design of experiments for engineers and scientists; Elsevier 2014. 2, p. 22.
[16]
Hanrahan, G.; Zhu, J.; Gibani, S. Patil, DG Chemometrics and statistics| experimental design.Encyclopedia of Analytical Science; Elsevier, 2005, pp. 8-13.
[http://dx.doi.org/10.1016/b0-12-369397-7/00079-0.]
[18]
Introduction to Design of Experiments (DOE)- DOE Types. Available from: https://www.weibull.com/hotwire/issue85/relbasics85.htm
[19]
Vanaja, K.; Shobha Rani, R.H. Design of experiments: Concept and applications of Plackett Burman design. Clin. Res. Regul. Aff., 2007, 1, 1-23.
[http://dx.doi.org/10.1080/10601330701220520]
[21]
Mathur, M.; Kusumdevi, V. Design of experiment : A novel and systematic approach of developing formulations in pharmaceuticals. World J. Pharm. Res., 2019, 8, 865-877.
[22]
Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. Response surface methodology: A retrospective and literature survey. J. Qual. Technol., 2004, 1, 53-77.
[http://dx.doi.org/10.1080/00224065.2004.11980252]
[24]
Ait-Amir, B.; Pougnet, P.; El Hami, A. Meta-model development. Embedded Mechatronic Systems, 2020, 2, 157-187.
[25]
Ferreira, S.L.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; dos Santos, W.N. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta, 2007, 597(2), 179-186.
[http://dx.doi.org/10.1016/j.aca.2007.07.011] [PMID: 17683728]
[26]
Anticancer drug | pharmacology | Britannica. Available from: https://www.britannica.com/science/anticancer-drug
[27]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[28]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. BMC Syst. Biol., 2017, 10, 1-7.
[29]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.E.; Wong, B.M. Heterogeneous CPU+ GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[30]
Al Sheikh Ali, A.; Khan, D.; Naqvi, A.; Al-Blewi, F.F.; Rezki, N.; Aouad, M.R.; Hagar, M. Design, synthesis, molecular modeling, anticancer studies, and density functional theory calculations of 4-(1,2,4-triazol-3-ylsulfanylmethyl)-1,2,3-triazole derivatives. ACS Omega, 2020, 6(1), 301-316.
[http://dx.doi.org/10.1021/acsomega.0c04595] [PMID: 33458482]
[31]
Koźmiński, P.; Halik, P.K.; Chesori, R.; Gniazdowska, E. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int. J. Mol., 2020, 21(10), 3483.
[32]
Karami, F.; Ranjbar, S.; Ghasemi, Y.; Negahdaripour, M. Analytical methodologies for determination of methotrexate and its metabolites in pharmaceutical, biological and environmental samples. J. Pharm. Anal., 2019, 9(6), 373-391.
[http://dx.doi.org/10.1016/j.jpha.2019.06.001] [PMID: 31890337]
[33]
Garg, N.K.; Sharma, G.; Singh, B.; Nirbhavane, P.; Katare, O.P. Quality by design (QbD)-based development and optimization of a simple, robust RP-HPLC method for the estimation of methotrexate. J. Liq. Chromatogr. Relat., 2015, 10, 1629-1637.
[http://dx.doi.org/10.1080/10826076.2015.1087409]
[34]
Sugantha Priya, E.; Selvakumar, K.; Bavithra, S.; Elumalai, P.; Arunkumar, R.; Raja Singh, P.; Brindha Mercy, A.; Arunakaran, J. Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. Neurol. Sci., 2014, 35(2), 163-170.
[http://dx.doi.org/10.1007/s10072-013-1462-1] [PMID: 23771516]
[35]
Zupanets, I.A.; Pidpruzhnykov, Y.V.; Sabko, V.E.; Bezugla, N.P.; Shebeko, S.K. UPLC-MS/MS quantification of quercetin in plasma and urine following parenteral administration. Clin. Phytoscience, 2019, 12, 1-2.
[http://dx.doi.org/10.1186/s40816-019-0107-1]
[36]
Sandhu, P.S.; Beg, S.; Kumar, R.; Katare, O.P.; Singh, B. Analytical QbD-based systematic bioanalytical HPLC method development for estimation of quercetin dihydrate. J. Liq. Chromatogr. Relat., 2017, 6, 506-516.
[http://dx.doi.org/10.1080/10826076.2017.1329744]
[37]
FDA approves ibrutinib plus rituximab for chronic lymphocytic leukemia | FDA. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-ibrutinib-plus-rituximab-chronic-lymphocytic-leukemia
[38]
Burger, J.A.; Buggy, J.J. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765). Leuk. Lymphoma, 2013, 54(11), 2385-2391.
[http://dx.doi.org/10.3109/10428194.2013.777837] [PMID: 23425038]
[39]
Hepsebah, N.J.R.; Kumar, A.A. Bioanalytical method development and validation of ibrutinib in biological matrices by LC-MS/MS. Int. J. Pharm. Pharm, 2019, 3, 22-26.
[40]
Rood, J.J.M.; van Hoppe, S.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Liquid chromatography-tandem mass spectrometric assay for the simultaneous determination of the irreversible BTK inhibitor ibrutinib and its dihydrodiol-metabolite in plasma and its application in mouse pharmacokinetic studies. J. Pharm. Biomed. Anal., 2016, 118, 123-131.
[http://dx.doi.org/10.1016/j.jpba.2015.10.033] [PMID: 26540627]
[41]
Muneer, S.; Ahad, H.A.; Bonnoth, C.K. A novel stability indicating analytical development and validation of a RP-HPLC assay method for the quantification of ibrutinib in bulk and its formulation. J. Pharm. Res., 2017, 6, 712-718.
[42]
Chen, X.; Wang, C.; Chen, M.; Zhou, Q.; Liu, Z.; Zhang, J.; Zhou, S.; Wen, C.; Zhang, M. Ultra performance liquid chromatography tandem mass spectrometry determination of ibrutinib in rat plasma. Lat. Am. J. Pharm., 2016, 1, 38-43.
[43]
Prasad, S.S.; Mohan, G.K.; Babu, A.N. A quality by design approach for development of simple and robust reversed phase stability indicating HPLC method for estimation of ibrutinib and its impurities. Anal. Methods, 2019, 7, 1434-1445.
[44]
de Médina, P.; Favre, G.; Poirot, M. Multiple targeting by the antitumor drug tamoxifen: A structure-activity study. Curr. Med. Chem. Anticancer Agents, 2004, 4(6), 491-508.
[http://dx.doi.org/10.2174/1568011043352696] [PMID: 15579015]
[45]
Sandhu, P.S.; Beg, S.; Katare, O.P.; Singh, B. QbD-driven development and validation of a HPLC method for estimation of tamoxifen citrate with improved performance. J. Chromatogr. Sci., 2016, 54(8), 1373-1384.
[http://dx.doi.org/10.1093/chromsci/bmw090] [PMID: 27226463]
[46]
Claude, B.; Morin, P.; Bayoudh, S.; de Ceaurriz, J. Interest of molecularly imprinted polymers in the fight against doping. Extraction of tamoxifen and its main metabolite from urine followed by high-performance liquid chromatography with UV detection. J. Chromatogr. A, 2008, 1196-1197, 81-88.
[http://dx.doi.org/10.1016/j.chroma.2008.05.022] [PMID: 18538333]
[47]
Antunes, M.V.; Staudt, D.E.; Raymundo, S.; de Oliveira, V.; Gössling, G.; Pirolli, R.; Biazús, J.V.; Cavalheiro, J.A.; Rosa, D.D.; Schwartsmann, G.; Linden, R. Development, validation and clinical application of a HPLC-FL method for CYP2D6 phenotyping in South Brazilian breast cancer patients. Clin. Biochem., 2014, 47(12), 1084-1090.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.04.008] [PMID: 24747158]
[48]
Gonçalves, D.; Alves, G.; Fortuna, A.; Soares-da-Silva, P.; Falcão, A. An HPLC-DAD method for the simultaneous quantification of opicapone (BIA 9-1067) and its active metabolite in human plasma. Analyst (Lond.), 2013, 138(8), 2463-2469.
[http://dx.doi.org/10.1039/c3an36671e] [PMID: 23476919]
[49]
Antunes, M.V.; Rosa, D.D. Viana, Tdos.S.; Andreolla, H.; Fontanive, T.O.; Linden, R. Sensitive HPLC-PDA determination of tamoxifen and its metabolites N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in human plasma. J. Pharm. Biomed. Anal., 2013, 76, 13-20.
[http://dx.doi.org/10.1016/j.jpba.2012.12.005] [PMID: 23291438]
[50]
Aqai, P.; Blesa, N.G.; Major, H.; Pedotti, M.; Varani, L.; Ferrero, V.E.; Haasnoot, W.; Nielen, M.W. Receptor-based high-throughput screening and identification of estrogens in dietary supplements using bioaffinity liquid-chromatography ion mobility mass spectrometry. Anal. Bioanal. Chem., 2013, 405(29), 9427-9436.
[http://dx.doi.org/10.1007/s00216-013-7384-1] [PMID: 24081568]
[51]
Jaremko, M.; Kasai, Y.; Barginear, M.F.; Raptis, G.; Desnick, R.J.; Yu, C. Tamoxifen metabolite isomer separation and quantification by liquid chromatography-tandem mass spectrometry. Anal. Chem., 2010, 82(24), 10186-10193.
[PMID: 21086978]
[52]
Heath, D.D.; Flat, S.W.; Wu, A.H.; Pruitt, M.A.; Rock, C.L. Evaluation of tamoxifen and metabolites by LC-MS/MS and HPLC methods. Br. J. Biomed. Sci., 2014, 71(1), 33-39.
[http://dx.doi.org/10.1080/09674845.2014.11669960] [PMID: 24693573]
[53]
Reddy, L.H.; Vivek, K.; Bakshi, N.; Murthy, R.S. Tamoxifen citrate loaded solid lipid nanoparticles (SLN): Preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm. Dev. Technol., 2006, 11(2), 167-177.
[http://dx.doi.org/10.1080/10837450600561265] [PMID: 16749527]
[54]
Elnaggar, Y.S.; El-Massik, M.A.; Abdallah, O.Y. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: Design and optimization. Int. J. Pharm., 2009, 380(1-2), 133-141.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.015] [PMID: 19635537]
[55]
Kumar, P.; Kumar, R.; Singh, B.; Malik, R.; Sharma, G.; Chitkara, D.; Katare, O.P.; Raza, K. Biocompatible phospholipid-based mixed micelles for tamoxifen delivery: Promising evidences from in vitro anticancer activity and dermatokinetic studies. AAPS PharmSciTech, 2017, 18(6), 2037-2044.
[http://dx.doi.org/10.1208/s12249-016-0681-1] [PMID: 27966177]
[56]
Discovery: Natural Compound Offers Hope - National Cancer Institute. Available from: https://www.cancer.gov/research/progress/discovery/taxol
[57]
Nightingale, S.L. Paclitaxel approved for treatment of certain breast cancer patients. JAMA, 1994, 271(23)
[58]
Yerlikaya, F.; Ozgen, A.; Vural, I.; Guven, O.; Karaagaoglu, E.; Khan, M.A.; Capan, Y. Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J. Pharm. Sci., 2013, 102(10), 3748-3761.
[http://dx.doi.org/10.1002/jps.23686] [PMID: 23918313]
[59]
Kulkarni, YA; Garud, MS; Gaud, RS; Gaikwad, AB Recent developments in using plant-derived natural products as tubulin inhibitors for the management of cancer., 2016.
[http://dx.doi.org/10.1016/B978-0-12-802972-5.00024-X]
[60]
Verweij, J. Docetaxel (Taxotere): A new anti-cancer drug with promising potential? Br. J. Cancer, 1994, 70(2), 183.
[61]
Gustafson, D.L.; Long, M.E.; Zirrolli, J.A.; Duncan, M.W.; Holden, S.N.; Pierson, A.S.; Eckhardt, S.G. Analysis of docetaxel pharmacokinetics in humans with the inclusion of later sampling time-points afforded by the use of a sensitive tandem LCMS assay. Cancer Chemother. Pharmacol., 2003, 52(2), 159-166.
[http://dx.doi.org/10.1007/s00280-003-0622-z] [PMID: 12759775]
[62]
Piechocki, M.P.; Lonardo, F.; Ensley, J.F.; Nguyen, T.; Kim, H.; Yoo, G.H. Anticancer activity of docetaxel in murine salivary gland carcinoma. Clin. Cancer Res., 2002, 8(3), 870-877.
[PMID: 11895921]
[63]
Ernsting, M.J.; Tang, W.L.; MacCallum, N.W.; Li, S.D. Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models. Biomaterials, 2012, 33(5), 1445-1454.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.061] [PMID: 22079003]
[64]
Zarogoulidis, K.; Chatzopoulou, A.; Kontakiotis, T.; Theodoridis, G.; Pousinis, P.; Patakas, D. Predisposing factors of blood brain barrier penetration from docetaxel during lung cancer treatment: Preliminary study. J. Clin. Oncol., 2006, 24(18), 17102.
[65]
Garg, M.B.; Ackland, S.P. Simple and sensitive high-performance liquid chromatography method for the determination of docetaxel in human plasma or urine. J. Chromatogr. B Biomed. Sci. Appl., 2000, 748(2), 383-388.
[http://dx.doi.org/10.1016/S0378-4347(00)00356-X] [PMID: 11087080]
[66]
Kemper, E.M.; Verheij, M.; Boogerd, W.; Beijnen, J.H.; van Tellingen, O. Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur. J. Cancer, 2004, 40(8), 1269-1274.
[http://dx.doi.org/10.1016/j.ejca.2004.01.024] [PMID: 15110893]
[67]
Khurana, R.K.; Beg, S.; Lal, D.; Katare, O.P.; Singh, B. Analytical quality by design approach for development of a validated bioanalytical UPLC method of docetaxel trihydrate. Curr. Pharm. Anal., 2015, 8, 180-192.
[68]
Lee, J.S.; Roberts, A.; Juarez, D.; Vo, T.T.; Bhatt, S.; Herzog, L.O.; Mallya, S.; Bellin, R.J.; Agarwal, S.K.; Salem, A.H.; Xu, T. Statins enhance efficacy of venetoclax in blood cancers. Sci. Transl. Med., 2018, 10(445)eaaq1240
[http://dx.doi.org/10.1126/scitranslmed.aaq1240]
[69]
FDA approves new drug for chronic lymphocytic leukemia in patients with a specific chromosomal abnormality; US Food and Drug administration 2016.
[70]
Žigart, N.; Časar, Z. Development of a stability-indicating analytical method for determination of venetoclax using AQbD principles. ACS Omega, 2020, 5(28), 17726-17742.
[http://dx.doi.org/10.1021/acsomega.0c02338] [PMID: 32715260]
[71]
Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]
[72]
Xu, D.; Chen, X.; Li, X.; Mao, Z.; Tang, W.; Zhang, W.; Ding, L.; Tang, J. Addition of capecitabine in breast cancer first-line chemotherapy improves survival of breast cancer patients. J. Cancer, 2019, 10(2), 418-429.
[http://dx.doi.org/10.7150/jca.29739] [PMID: 30719136]
[73]
Wang, F.; Wang, F.H.; Bai, L.; Xu, R.H. Role of capecitabine in treating metastatic colorectal cancer in Chinese patients. OncoTargets Ther., 2014, 7, 501-511.
[PMID: 24729715]
[74]
O’Shaughnessy, J.; Miles, D.; Vukelja, S.; Moiseyenko, V.; Ayoub, J.P.; Cervantes, G.; Fumoleau, P.; Jones, S.; Lui, W.Y.; Mauriac, L.; Twelves, C.; Van Hazel, G.; Verma, S.; Leonard, R. Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J. Clin. Oncol., 2002, 20(12), 2812-2823.
[http://dx.doi.org/10.1200/JCO.2002.09.002] [PMID: 12065558]
[75]
Panda, S.S.; Ravi Kumar Bera, V.V.; Sahu, B. Integrated quality by design (QbD) and quality risk management (QRM) based liquid chromatographic method development and validation for estimation of capecitabine in pharmaceutical dosage form. Anal. Chem. Lett., 2018, 9, 665-676.
[http://dx.doi.org/10.1080/22297928.2018.1516567]
[76]
Upadhyay, M.; Adena, S.K.R.; Vardhan, H.; Yadav, S.K.; Mishra, B. Development of biopolymers based interpenetrating polymeric network of capecitabine: A drug delivery vehicle to extend the release of the model drug. Int. J. Biol. Macromol., 2018, 115, 907-919.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.123] [PMID: 29705110]
[77]
Kuchekar, A.B.; Pawar, A.P. Capecitabine loaded polymeric micelles: Formulation, characterization and cytotoxicity study. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, 2013, pp. 412-415.
[78]
Design and optimization of capecitabine proniosomes. Int J Pharma Res Heal Sci, 2019, 6, 2717-2722.
[79]
Kuchekar, A.B.; Pawar, A.P. Screening of factors using Plackett Burman design in the preparation of Capecitabine-loaded nano polymeric micelles. Int. J. Pharm. Pharm. Sci., 2014, 6, 489-496.
[80]
Agarwala, S.S.; Kirkwood, J.M. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist, 2000, 5(2), 144-151.
[http://dx.doi.org/10.1634/theoncologist.5-2-144] [PMID: 10794805]
[81]
Khan, A.; Imam, S.S.; Aqil, M.; Sultana, Y.; Ali, A.; Khan, K. Design of experiment based validated stability indicating RP-HPLC method of temozolomide in bulk and pharmaceutical dosage forms. J. Basic Appl, 2016, 12, 402-408.
[82]
Vanza, J.; Jani, P.; Pandya, N.; Tandel, H. Formulation and statistical optimization of intravenous temozolomide-loaded PEGylated liposomes to treat glioblastoma multiforme by three-level factorial design. Drug Dev. Ind. Pharm., 2018, 44(6), 923-933.
[http://dx.doi.org/10.1080/03639045.2017.1421661] [PMID: 29280385]
[83]
Douillard, J.Y.; Cunningham, D.; Roth, A.D.; Navarro, M.; James, R.D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M.; Gruia, G.; Awad, L.; Rougier, P. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: A multicentre randomised trial. Lancet, 2000, 355(9209), 1041-1047.
[http://dx.doi.org/10.1016/S0140-6736(00)02034-1] [PMID: 10744089]
[84]
Liu, J.; Wang, Z.; Wu, K.; Li, J.; Chen, W.; Shen, Y.; Guo, S. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer. Biomaterials, 2015, 53, 592-599.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.009] [PMID: 25890755]
[85]
Xu, Z.Y.; Tang, J.N.; Xie, H.X.; Du, Y.A.; Huang, L.; Yu, P.F.; Cheng, X.D. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int. J. Biol. Sci., 2015, 11(3), 284-294.
[http://dx.doi.org/10.7150/ijbs.10248] [PMID: 25678847]
[86]
Li, C.P.; Chao, Y.; Chi, K.H.; Chan, W.K.; Teng, H.C.; Lee, R.C.; Chang, F.Y.; Lee, S.D.; Yen, S.H. Concurrent chemoradiotherapy treatment of locally advanced pancreatic cancer: Gemcitabine versus 5-fluorouracil, a randomized controlled study. Int. J. Radiat. Oncol. Biol. Phys., 2003, 57(1), 98-104.
[http://dx.doi.org/10.1016/S0360-3016(03)00435-8] [PMID: 12909221]
[87]
Cameron, D.A.; Gabra, H.; Leonard, R.C. Continuous 5-fluorouracil in the treatment of breast cancer. Br. J. Cancer, 1994, 70(1), 120-124.
[http://dx.doi.org/10.1038/bjc.1994.259] [PMID: 8018521]
[88]
Eifel, P.J. Chemoradiotherapy in the treatment of cervical cancer. Semin. Radiat. Oncol., 2006, 16(3), 177-185.
[http://dx.doi.org/10.1016/j.semradonc.2006.02.007] [PMID: 16814159]
[89]
Zhu, L.; Ma, J.; Jia, N.; Zhao, Y.; Shen, H. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: Preparation, characterization and cytotoxicity studies. Colloids Surf. B Biointerfaces, 2009, 68(1), 1-6.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.020] [PMID: 19013060]
[90]
Dalwadi, C.; Patel, G. Implementation of “quality by design (QbD)” approach for the development of 5- fluorouracil loaded thermosensitive hydrogel. Curr. Drug Deliv., 2016, 13(4), 512-527.
[http://dx.doi.org/10.2174/1567201812666150817122506] [PMID: 26279120]
[91]
Gupta, A.; Raina, V. J. Cancer Res. Ther., 2010, 6(3), 249.
[92]
Kola Srinivas, N.S.; Verma, R.; Pai Kulyadi, G.; Kumar, L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: Formulation, in vitro, and in vivo characterization. Int. J. Nanomedicine, 2016, 12, 15-28.
[http://dx.doi.org/10.2147/IJN.S122729] [PMID: 28031710]
[93]
Barra, F.; Laganà, A.S.; Ghezzi, F.; Casarin, J.; Ferrero, S. Nintedanib for advanced epithelial ovarian cancer: A change of perspective? Summary of evidence from a systematic review. Gynecol. Obstet. Invest., 2019, 84(2), 107-117.
[http://dx.doi.org/10.1159/000493361] [PMID: 30304728]
[94]
Jayagopal, B.; Murugesh, S. QbD-mediated RP-UPLC method development invoking an FMEA-based risk assessment to estimate nintedanib degradation products and their pathways. Arab. J. Chem., 2020, 9, 7087-7103.
[http://dx.doi.org/10.1016/j.arabjc.2020.07.014]
[95]
Current status of vinorelbine for breast cancer - PubMed. Available from: https://pubmed.ncbi.nlm.nih.gov/7577376/
[96]
Sørensen, P.; Høyer, M.; Jakobsen, A.; Malmström, H.; Havsteen, H.; Bertelsen, K. Phase II study of vinorelbine in the treatment of platinum-resistant ovarian carcinoma. Gynecol. Oncol., 2001, 81(1), 58-62.
[http://dx.doi.org/10.1006/gyno.2000.6089] [PMID: 11277650]
[97]
Li, Y.; Zhao, X.; Zu, Y.; Han, X.; Ge, Y.; Wang, W.; Yu, X. A novel active targeting preparation, vinorelbine tartrate (VLBT) encapsulated by folate-conjugated bovine serum albumin (BSA) nanoparticles: Preparation, characterization and in vitro release study. Materials (Basel), 2012, 11, 2403-2422.
[http://dx.doi.org/10.3390/ma5112403]
[98]
Maurya, L.; Singh, S.; Rajamanickam, V.M.; Narayan, G. Vitamin E TPGS emulsified vinorelbine bitartrate loaded Solid Lipid Nanoparticles (SLN): Formulation development, optimization and in vitro characterization. Curr. Drug Deliv., 2018, 15(8), 1135-1145.
[http://dx.doi.org/10.2174/1567201815666180409105410] [PMID: 29629662]
[99]
Kornienko, A.; Evidente, A.; Vurro, M.; Mathieu, V.; Cimmino, A.; Evidente, M.; van Otterlo, W.A.; Dasari, R.; Lefranc, F.; Kiss, R. Toward a cancer drug of fungal origin. Med. Res. Rev., 2015, 35(5), 937-967.
[http://dx.doi.org/10.1002/med.21348] [PMID: 25850821]
[100]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2013, 65(2), 157-170.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
[101]
Tripathi, C.B.; Parashar, P.; Arya, M.; Singh, M.; Kanoujia, J.; Kaithwas, G.; Saraf, S.A. QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: In vitro and in vivo evaluation. Drug Deliv. Transl. Res., 2018, 8(5), 1313-1334.
[http://dx.doi.org/10.1007/s13346-018-0525-5] [PMID: 29748834]
[102]
Aroldi, F.; Bertocchi, P.; Savelli, G.; Rosso, E.; Zaniboni, A. Pancreatic cancer: New hopes after first line treatment. World J. Gastrointest. Oncol., 2016, 8(9), 682-687.
[http://dx.doi.org/10.4251/wjgo.v8.i9.682] [PMID: 27672426]
[103]
Bokemeyer, C.; Gerl, A.; Schöffski, P.; Harstrick, A.; Niederle, N.; Beyer, J.; Casper, J.; Schmoll, H.J.; Kanz, L. Gemcitabine in patients with relapsed or cisplatin-refractory testicular cancer. J. Clin. Oncol., 1999, 17(2), 512-516.
[http://dx.doi.org/10.1200/JCO.1999.17.2.512] [PMID: 10080593]
[104]
Gemcitabine Hydrochloride (Gemzar) to Treat Breast Cancer | News. Available from: https://breastcancer-news.com/gemcitabine-hydrochloride-gemzar/
[105]
Lorusso, D.; Di Stefano, A.; Fanfani, F.; Scambia, G. Role of gemcitabine in ovarian cancer treatment. Ann. Oncol., 2006, 17, 188-194.
[http://dx.doi.org/10.1093/annonc/mdj979]
[106]
Sun, J.M.; Ahn, J.S.; Jung, S.H.; Sun, J.; Ha, S.Y.; Han, J.; Park, K.; Ahn, M.J. Pemetrexed plus cisplatin versus gemcitabine plus cisplatin according to thymidylate synthase expression in nonsquamous non–small-cell lung cancer: A biomarker-stratified randomized phase II trial. J. Clin. Oncol., 2015, 33(22), 2450-2456.
[http://dx.doi.org/10.1200/JCO.2014.59.9324] [PMID: 26124486]
[107]
Sternberg, C.N. Gemcitabine in bladder cancer. Semin. Oncol., 2000, 27(1)(Suppl. 2), 31-39.
[PMID: 10697034]
[108]
Momin, S.; Khan, S.; Ghadge, D.M.; Bhise, K.S. Formulation, development and characterization of solid lipid nanoparticles of gemcitabine hydrochloride. J. Drug Deliv. Ther., 2017, 1, 1-2.
[http://dx.doi.org/10.22270/jddt.v7i1.1349]
[109]
Eggermont, A.M.; Kirkwood, J.M. Re-evaluating the role of dacarbazine in metastatic melanoma: What have we learned in 30 years? Eur. J. Cancer, 2004, 40(12), 1825-1836.
[http://dx.doi.org/10.1016/j.ejca.2004.04.030] [PMID: 15288283]
[110]
Richardson, S.E.; McNamara, C. The management of classical Hodgkin’s lymphoma: Past, present, and future. Adv. Hematol., 2011, 2011865870
[http://dx.doi.org/10.1155/2011/865870] [PMID: 21687653]
[111]
Al-Sharif, I.; Remmal, A.; Aboussekhra, A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer, 2013, 13(1), 600.
[http://dx.doi.org/10.1186/1471-2407-13-600] [PMID: 24330704]
[112]
Mishra, H.; Mishra, P.K.; Iqbal, Z.; Jaggi, M.; Madaan, A.; Bhuyan, K.; Gupta, N.; Gupta, N.; Vats, K.; Verma, R.; Talegaonkar, S. Co-delivery of eugenol and dacarbazine by hyaluronic acid-coated liposomes for targeted inhibition of survivin in treatment of resistant metastatic melanoma. Pharmaceutics, 2019, 11(4), 163.
[http://dx.doi.org/10.3390/pharmaceutics11040163] [PMID: 30987266]
[113]
Foa, P.; Iurlo, A.; Ribera, S.; Damilano, I.; Caldiera, S.; Fornier, M.; Bertoni, F.; Maiolo, A. Chronic myeloid leukemia treated with busulfan. Oncol. Rep., 1996, 3(6), 1067-1069.
[PMID: 21594509]
[114]
Cogle, C.R.; Moreb, J.S.; Leather, H.L.; Finiewicz, K.J.; Khan, S.A.; Reddy, V.S.; Wingard, J.R. Busulfan, cyclophosphamide, and etoposide as conditioning for autologous stem cell transplantation in multiple myeloma. Am. J. Hematol., 2003, 73(3), 169-175.
[http://dx.doi.org/10.1002/ajh.10342] [PMID: 12827653]
[115]
Chobisa, D.; Patel, K.; Monpara, J.; Patel, M.; Vavia, P. Development and characterization of an organic solvent free, proliposomal formulation of Busulfan using quality by design approach. Int. J. Pharm., 2018, 535(1-2), 360-370.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.007] [PMID: 29126906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy