Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Characterization of Allergic Polymerized Impurities in Cephalosporins by MALDI-TOF MS/MS Spectrometry

Author(s): Dandan Wang and Jian Wang*

Volume 18, Issue 7, 2022

Published on: 13 May, 2022

Page: [719 - 731] Pages: 13

DOI: 10.2174/1573412918666220330003952

Price: $65

Abstract

Background:Characterization of allergic polymerized impurities in cephalosporins is significant to ensure the safety and quality of the products.

Objective: The aim of the study was to develop a MALDI-TOF MS/MS method to characterize the structures of polymerized impurities in cefuroxime axetil drug substance and cefetamet pivoxil drug substance.

Methods: Calibrant references were TOF mix, including Angiotensin 2, Angiotensin 1, Glu-1- fibrino, N-Acetyl renin, ACTH 1-17, ACTH 18-39, and ACTH 7-38. Matrix was DHB at a concentration of 10 mg·mL-1. Acetone and water were used as solvents to dissolve cefuroxime axetil and cefetamet pivoxil hydrochloride drug substances, respectively. The prepared solutions were mixed with DHB, volatilized to dry, and subjected to MALDI-TOF MS/MS analysis, respectively. MS data were obtained in the linear mode with a power of 80, and MS2 data were obtained in the reflection mode with a power of 120. Molecular weights of polymerized impurities in cefuroxime axetil and cefetamet pivoxil were obtained based on the MS data. Their fragmentation patterns and structural assignments were studied based on the MS2 data.

Results: Eight polymerized impurities in cefuroxime axetil drug substance and cefetamet pivoxil hydrochloride drug substance made in China were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS/MS), among which impurity Ⅰ-Ⅴ were in cefuroxime axetil and impurities Ⅵ-Ⅷ were in cefetamet pivoxil. Based on the experimental results, the polymerization mechanism of polymerized impurities in cephalosporins was discussed.

Conclusion: MALDI-TOF MS/MS proved to be simple, quick and sensitive for the analysis of polymerized impurities in cephalosporins.

Keywords: MALDI-TOF MS/MS, cephalosporin, cefuroxime axetil, cefetamet, pivoxil hydrochloride, polymerized impurities, characterization.

Graphical Abstract
[1]
Jiang, X.L.; Liu, K.; Deng, J.F.; Li, B. Research progress in the high molecular weight impurities of cephalosporinst. World Notes on Antibiotics, 2007, 28(6), 264-269.
[2]
Han, C.; Yang, W. Discussion on the pre-clinical safety evaluation of the allergic reactions in the cephalosporin antibiotics. World Notes on Antibiotics, 2009, 30(3), 136-138.
[3]
Gao, L.; Li, C.Q.; Xue, Q.S.; Zhang, L.Y.; Wang, T. The research progress of highpolymers in antibiotics combinations containing β-lactamase inhibitors. World Notes Antibiotucs, 2013, 34(2), 52-59.
[4]
Zhang, X.; Li, J.; Wang, C.; Liu, Y.; Yao, S.C.; Yin, L.H.; Xu, M.Z.; Hu, C.Q. Research on polymer impurities in cefazolin sodium raw materials and products. Yao Xue Xue Bao, 2013, 56(6), 1677-1682.
[5]
Wang, D.; Wang, F.; Wang, J. Characterization of the impurities and isomers in cefetamet pivoxil hydrochloride by liquid chromatography/time-of-flight mass spectrometry and ion trap mass spectrometry. J. Pharm. Biomed. Anal., 2015, 111, 71-77.
[http://dx.doi.org/10.1016/j.jpba.2015.03.013] [PMID: 25863019]
[6]
Karadurmus, L.; Esme, K.; Bakirhan, N.K.; Ozkan, S.A. Recent electrochemical assays on cephalosporins. Curr. Pharm. Anal., 2020, 16(4), 337-349.
[http://dx.doi.org/10.2174/1573412915666190523120431]
[7]
Sun, H.; Cui, X.; Liu, B.; Zhang, J. Relationship between the color stability and impurity profile of cefotaxime sodium. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1063, 235-244.
[http://dx.doi.org/10.1016/j.jchromb.2017.08.043] [PMID: 28890363]
[8]
Hu, C.Q. Impurity control strategy of β-lactam antibiotics polymer: The formation and development. Zhongguo Xin Yao Zazhi, 2020, 29(11), 1231-1244.
[9]
Xu, Y.; Wang, D.; Tang, L.; Wang, J. Separation and characterization of allergic polymerized impurities in cephalosporins by 2D-HPSEC×LC-IT-TOF MS. J. Pharm. Biomed. Anal., 2017, 145, 742-750.
[http://dx.doi.org/10.1016/j.jpba.2017.07.063] [PMID: 28806571]
[10]
Xu, Y.; Wang, J. Fragmentation rules of cephalosporins based on electrospray ionization mass spectrometry in negative ion mode. Yaowu Fenxi Zazhi, 2019, 39(6), 1019-1030.
[11]
Gaspar, A.; Kardos, S.; Andrasi, M.; Klekner, A. Capillary electrophoresis for the direct determination of cephalosporins in clinical samples. Chromatographia, 2002, 56, S109-S114.
[http://dx.doi.org/10.1007/BF02494122]
[12]
Zhao, L.; Guo, J.F.; Zhang, A.J.; Zhao, Y.M. Rapid identification of the isomeric impurity in raw drug of cefepime dihydrochloride by liquid chromatography-tandem mass spectrometry. Yao Xue Xue Bao, 2005, 40(4), 361-364.
[PMID: 16011268]
[13]
Hyun, M.H.; Jeong, E.D.; Shin, M.S.; Jin, J.S. A comparison of analytical methods for the content and purity of cefradine. Bull. Korean Chem. Soc., 2008, 29(6), 1185-1189.
[http://dx.doi.org/10.5012/bkcs.2008.29.6.1185]
[14]
Hurum, D.; De Borba, B.; Rohrer, J. Determination of cefepime and related compounds using HPLC with UV detection. LC GC Eur., 2008, 21.
[15]
Li, J.; Wang, L.X.; Yao, S.C.; Hu, C.Q. Characterization of impurities in cefdinir bulk material by online column-switching liquid chromatography and tandem mass spectrometry. Curr. Pharm. Anal., 2013, 9(2), 145-158.
[http://dx.doi.org/10.2174/1573412911309020004]
[16]
Abdelaleem, E.A.; Naguib, I.A.; Zaazaa, H.E.; Hussein, E.A. Development and validation of HPLC and HPTLC methods for determination of cefoperazone and its related impurities. J. Chromatogr. Sci., 2016, 54(2), 179-186.
[PMID: 26306573]
[17]
Rodrigues, D.F.; Salgado, H.R. Development and validation of a green analytical method of RP-HPLC for quantification of cefepime hydrochloride in pharmaceutical dosage form: simple, sensitive and economic. Curr. Pharm. Anal., 2016, 12(4), 337-349.
[http://dx.doi.org/10.2174/1573412912666151221210921]
[18]
Sapon, A.; Luhin, V.; Sovastei, O.; Spanik, P.; Bondariev, V. Identification and fragmentation of cefalosporins, lincosamides, levofloxacin, doxycycline, vancomycin by ESI-MS. Acta Phys. Pol. A, 2017, 132(2), 236-239.
[http://dx.doi.org/10.12693/APhysPolA.132.236]
[19]
Li, J.; Yao, S.C.; Hu, C.Q. Characterization of impurity profiles in latamoxef sodium raw material by LC/MSn. Chin. J. Antibiot., 2019, 44(7), 820-833.
[20]
Ivaturi, R.; Sastry, T.M.; Sunkara, S. Development and validation of stability indicating HPLC method for the determination of impurities in the sterile mixture of cefoperazone and sulbactam. Curr. Pharm. Anal., 2019, 15(7), 762-775.
[http://dx.doi.org/10.2174/1573412914666180914163419]
[21]
Ren, X.; Liu, G.; Tang, K.; Zhou, P.; Wang, J. Separation and structural elucidation of cefsulodin and its impurities in both positive and negative ion mode in cefsulodin sodium bulk material using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2021, 35(15), e9125.
[http://dx.doi.org/10.1002/rcm.9125] [PMID: 34000097]
[22]
Ren, X.; Zhou, J.; Wang, J. Separation and characterization of impurities and isomers in cefpirome sulfate by liquid chromatography/tandem mass spectrometry and a summary of the fragmentation pathways of oxime-type cephalosporins. Rapid Commun. Mass Spectrom., 2021, 35(4), e9004.
[http://dx.doi.org/10.1002/rcm.9004] [PMID: 33188542]
[23]
Kafle, A.; Coy, S.L.; Wong, B.M.; Fornace, A.J., Jr; Glick, J.J.; Vouros, P. Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J. Am. Soc. Mass Spectrom., 2014, 25(7), 1098-1113.
[http://dx.doi.org/10.1007/s13361-013-0808-5] [PMID: 24452298]
[24]
Council of European. British Pharmacopoeia, 10th ed.; EDQM: London, 2021.
[25]
Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science and Technology Press: Beijing, 2020.
[26]
Zhu, J.R.; Huang, H.Q. Progress of research on analysis of peptide components in cell and tissue with MALDI-TOF mass spectrometry. Anal. Instrum., 2004, 2, 5-9.
[27]
Prideaux, B.; Staab, D.; Stoeckli, M. Applications of MALDI-MSI to pharmaceutical research. Methods Mol. Biol., 2010, 656, 405-413.
[http://dx.doi.org/10.1007/978-1-60761-746-4_23] [PMID: 20680604]
[28]
Fukuyama, Y. MALDI Matrix research for biopolymers. Mass Spectrom. (Tokyo), 2015, 4(1), A0037.
[http://dx.doi.org/10.5702/massspectrometry.A0037] [PMID: 26819908]
[29]
Rahi, P.; Prakash, O.; Shouche, Y.S. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: Challenges and scopes for microbial ecologists. Front. Microbiol., 2016, 7, 1359.
[http://dx.doi.org/10.3389/fmicb.2016.01359] [PMID: 27625644]
[30]
Fuh, M.M.; Heikaus, L.; Schluter, H. MALDI mass spectrometry in medical research and diagnostic routine laboratories. Int. J. Mass Spectrom., 2017, 416, 96-109.
[http://dx.doi.org/10.1016/j.ijms.2016.10.004]
[31]
Yu, J.J.; Yu, J.; Liu, Y. Research progresses of applying MALDI-TOF mass spectrometry in the detection of beta-lactamase. J. Shanghai Jiaotong Univ. Med. Sci., 2017, 37(4), 566-570.
[32]
Fan, X.L.; Chen, T.Y.; Li, J.Y.; Duan, K. Working principle of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and its application in microbial research. Zhongguo Xin Yao Zazhi, 2019, 28(24), 2969-2973.
[33]
Barré, F.P.Y.; Paine, M.R.L.; Flinders, B.; Trevitt, A.J.; Kelly, P.D.; Ait-Belkacem, R.; Garcia, J.P.; Creemers, L.B.; Stauber, J.; Vreeken, R.J.; Cillero-Pastor, B.; Ellis, S.R.; Heeren, R.M.A. Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. Anal. Chem., 2019, 91(16), 10840-10848.
[http://dx.doi.org/10.1021/acs.analchem.9b02495] [PMID: 31355633]
[34]
Manikandan, M.; Deenadayalan, A.; Vimala, A.; Gopal, J.; Chun, S. Clinical MALDI mass spectrometry for tuberculosis diagnostics: Speculating the methodological blueprint and contemplating the obligation to improvise. Trends Analyt. Chem., 2017, 94, 190-199.
[http://dx.doi.org/10.1016/j.trac.2017.06.014]
[35]
Yang, Y.C.; Chen, Q.F.; Xia, Y. Research progress in novel matrixes for MALDI-TOF MS analysis of small molecule compounds. Fenxi Ceshi Xuebao, 2018, 37(11), 1381-1387.
[36]
Fresnais, M.; Yildirim, E.; Karabulut, S.; Jäger, D.; Zörnig, I.; Benzel, J.; Pajtler, K.W.; Pfister, S.M.; Burhenne, J.; Haefeli, W.E.; Longuespée, R. Rapid MALDI-MS assays for drug quantification in biological matrices: Lessons learned, new developments, and future perspectives. Molecules, 2021, 26(5), 1281.
[http://dx.doi.org/10.3390/molecules26051281] [PMID: 33652935]
[37]
Tammekivi, E.; Ghiami-Shomami, A.; Tshepelevitsh, S.; Trummal, A.; Ilisson, M.; Selberg, S.; Vahur, S.; Teearu, A.; Lõkov, M.; Peets, P.; Pagano, T.; Leito, I. Experimental and computational study of aminoacridines as MALDI(-)-MS matrix materials for the analysis of complex samples. J. Am. Soc. Mass Spectrom., 2021, 32(4), 1080-1095.
[http://dx.doi.org/10.1021/jasms.1c00037] [PMID: 33726494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy