Skip to main content
Log in

Application of Neutron Scattering to Study Materials and Transition Processes in Lithium Energy Storage Devices at the IBR-2 Pulsed Reactor

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review covers the development of thermal neutron scattering methods for studying and diagnosing components of lithium energy storage devices at the IBR-2 pulsed reactor of the Joint Institute for Nuclear Research (Dubna, Russia). Experimental structural investigations of electrode materials and electrochemical interfaces over the past ten years are summarized. Their results enable a relationship to be established between the structure of the components of the electrochemical cells and their macroscopic characteristics under different conditions and better insight to be gained into the features of physicochemical processes occurring in them, which has allowed formulating recommendations on the composition and synthesis of materials for improving the capacity and operational safety of lithium energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. A. M. Balagurov, I. A. Bobrikov, N. Y. Samoylova, O. A. Drozhzhin, and E. V. Antipov, “Neutron scattering for analysis of processes in lithium-ion batteries,” Rus. Chem. Rev. 83, 1120–1134 (2014).

    Article  Google Scholar 

  2. D. M. Itkis, J. J. Velasco-Velez, A. Knop-Gericke, A. Vyalikh, M. V. Avdeev, and L. V. Yashina, “Probing of electrochemical interfaces by photons and neutrons in operando,” ChemElectroChem 2, 1427–1445 (2015).

    Article  Google Scholar 

  3. M. V. Avdeev, I. A. Bobrikov, and V. I. Petrenko, “Neutron methods for tracking lithium in operating electrodes and interfaces,” Phys. Sci. Rev. 3, 20170157 (2018).

    Google Scholar 

  4. H. Zhu, Y. Huang, H. Zhu, L. Wang, S. Lan, X. Xia, and Q. Liu, “In situ probing multiple-scale structures of energy materials for Li-ion batteries,” Small Methods 4, 1900223 (2019).

    Article  Google Scholar 

  5. D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li, K. Li, S. Wang, Q. Yu, M. Liu, S. Ganapathy, X. Qin, Q.-H. Yang, M. Wagemaker, F. Kang, X.-Q. Yang, and B. Li, “Review of recent development of in situ/operando characterization techniques for lithium battery research,” Adv. Mater. 31, 1806620 (2019).

    Article  Google Scholar 

  6. E. Zhao, Z.-G. Zhang, X. Li, L. He, X. Yu, H. Li, and F. Wang, “Neutron-based characterization techniques for lithium-ion battery research,” Chinese Phys. B 29, 018201 (2020).

    Article  ADS  Google Scholar 

  7. K. Xu, “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries,” Chem. Rev. 104, 4303–4417 (2004).

    Article  Google Scholar 

  8. T. Placke, R. Kloepsch, S. Dühnen, and M. Winter, “Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density,” J. Solid State Electrochem. 21, 1939–1964 (2017).

    Article  Google Scholar 

  9. A. A. Rulev, A. V. Sergeev, L. V. Yashina, T. Jacob, and D. M. Itkis, “Electromigration in lithium whisker formation plays insignificant role during electroplating,” ChemElectroChem 6, 1324–1328 (2019).

    Article  Google Scholar 

  10. J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature 414, 359–367 (2001).

    Article  ADS  Google Scholar 

  11. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and Ji-G. Zhang, “Lithium metal anodes for rechargeable batteries,” Energy Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  12. Y. Zhang, Y. Zhao, K. E. Sun, and P. Chen, “Development in lithium/sulfur secondary batteries,” Open Mater. Sci. J. 5, 215–221 (2011).

    Article  Google Scholar 

  13. J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte,” J. Power Sources 74, 219–227 (1998).

    Article  ADS  Google Scholar 

  14. J. Steiger, G. Richter, M. Wenk, D. Kramer, and R. Mönig, “Comparison of the growth of lithium filaments and dendrites under different conditions,” Electrochem. Commun. 50, 11–14 (2015).

    Article  Google Scholar 

  15. A. M. Balagurov, I. A. Bobrikov, G. D. Bokuchava, V. V. Zhuravlev, and V. G. Simkin, “Correlation Fourier diffractometry: 20 years of experience at the IBR-2 reactor,” Phys. Part. Nucl. 46, 249–276 (2015).

    Article  Google Scholar 

  16. A. M. Balagurov, A. I. Beskrovnyy, V. V. Zhuravlev, G. M. Mironova, I. A. Bobrikov, D. Neov, and S. G. Sheverev, “Neutron diffractometer for real-time studies of transient processes at the IBR-2 pulsed reactor,” J. Surf. Invest. 10, 467–479 (2016).

    Article  Google Scholar 

  17. I. A. Bobrikov, A. M. Balagurov, C.-W. Hu, C.-H. Lee, S. Deleg, and D. A. Balagurov, “Structural evolution in LiFePO4-based battery materials: In-situ and ex-situ time-of-flight neutron diffraction study,” J. Power Sources 258, 356–364 (2014).

    Article  ADS  Google Scholar 

  18. N. V. Kosova, I. A. Bobrikov, O. A. Podgornova, A. M. Balagurov, and A. K. Gutakovskii, “Peculiarities of structure, morphology, and electrochemistry of the doped 5-V spinel cathode materials LiNi0.5 – XMn1.5 – YMX + YO4 (M = Co, Cr, Ti; X + Y = 0.05) prepared by mechanochemical way,” J. Solid State Electrochem. 20, 235–246 (2016).

    Article  Google Scholar 

  19. E. A. Sherstobitova, A. F. Gubkin, I. A. Bobrikov, A. V. Kalashnova, and M. I. Pantyukhina, “Bottle-necked ionic transport in Li2ZrO3: High temperature neutron diffraction and impedance spectroscopy,” Electrochim. Acta 209, 574–581 (2016).

    Article  Google Scholar 

  20. N. Sharma, W. K. Pang, Z. P. Guo, and V. K. Peterson, “In situ powder diffraction studies of electrode materials in rechargeable batteries,” ChemSusChem 8, 2826–2853 (2015).

    Article  Google Scholar 

  21. I. A. Bobrikov, N. Yu. Samoylova, O. Yu. Ivanshina, R. N. Vasin, S. V. Sumnikov, E. A. Kornieieva, and A. M. Balagurov, “Abnormal phase-separated state of LiNi0.8Co0.15Al0.05O2 in the first charge: Effect of electrode compaction,” Electrochim. Acta 265, 726–735 (2018).

    Article  Google Scholar 

  22. Y. Lauw, T. Rodopoulos, M. Gross, A. Nelson, R. Gardner, and M. D. Horne, “Electrochemical cell for neutron reflectometry studies of the structure of ionic liquids at electrified interface,” Rev. Sci. Instrum. 81, 074101 (2010).

    Article  ADS  Google Scholar 

  23. B. Jerliu, L. Dörrer, E. Hüger, G. Borchardt, R. Steitz, U. Geckle, V. Oberst, M. Bruns, O. Schneider, and H. Schmidt, “Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries,” Phys. Chem. Chem. Phys. 15, 7777–7784 (2013).

    Article  Google Scholar 

  24. M. Yonemura, M. Hirayama, K. Suzuki, R. Kanno, N. Torikai, and N. L. Yamada, “Development of spectroelectrochemical cells for in situ neutron reflectometry,” J. Phys. Conf. Ser. 502, 012054 (2014).

    Article  Google Scholar 

  25. S. C. DeCaluwe, B. M. Dhar, L. Huang, Y. He, K. Yang, J. P. Owejan, Y. Zhao, A. A. Talin, J. A. Dura, and H. Wang, “Pore collapse and regrowth in silicon electrodes for rechargeable batteries,” Phys. Chem. Chem. Phys. 17, 11301–11312 (2015).

    Article  Google Scholar 

  26. H. Kawaura, M. Harada, Y. Kondo, H. Kondo, Y. Suganuma, N. Takahashi, J. Sugiyama, Y. Seno, and N. L. Yamada, “Operando measurement of solid electrolyte interphase formation at working electrode of Li-ion battery by time-slicing neutron reflectometry,” ACS Appl. Mater. Interfaces 8, 9540–9544 (2016).

    Article  Google Scholar 

  27. M. V. Avdeev, A. A. Rulev, V. I. Bodnarchuk, E. E. Ushakova, V. I. Petrenko, I. V. Gapon, O. V. Tomchuk, V. A. Matveev, N. K. Pleshanov, E. Yu. Kataev, L. V. Yashina, and D. M. Itkis, “Monitoring of lithium plating by neutron reflectometry,” Appl. Surf. Sci. 424, 378–382 (2017).

    Article  ADS  Google Scholar 

  28. C. H. Lee, J. A. Dura, A. LeBar, and S. C. DeCaluwe, “Direct, operando observation of the bilayer solid electrolyte interphase structure: Electrolyte reduction on a non-intercalating electrode,” J. Power Sources 412, 725–735 (2019).

    Article  ADS  Google Scholar 

  29. A. Ronneburg, “Surface structure inhibited lithiation of crystalline silicon probed with operando neutron reflectivity,” Energy Storage Mater. 18, 182–189 (2019).

    Article  Google Scholar 

  30. E. D. Rus and J. A. Dura, “In situ neutron reflectometry study of solid electrolyte interface (SEI) formation on tungsten thin-film electrodes,” ACS Appl. Mater. Interfaces 11, 47553–47563 (2019).

    Article  Google Scholar 

  31. J. A. Dura, E. D. Rus, P. A. Kienzle, and B. B. Maranville, “Nanolayer analysis by neutron reflectometry,” in Nanolayer Research (Elsevier, 2017), pp. 155–202.

    Google Scholar 

  32. J. E. Owejan, J. P. Owejan, S. C. DeCaluwe, and J. A. Dura, “Solid electrolyte interphase in Li-ion batteries: Evolving structures measured in situ by neutron reflectometry,” Chem. Mater. 24, 2133–2140 (2012).

    Article  Google Scholar 

  33. M. V. Avdeev, V. I. Bodnarchuk, V. I. Petrenko, I. V. Gapon, O. V. Tomchuk, A. V. Nagorny, V. A. Ulya-nov, L. A. Bulavin, and V. L. Aksenov, “Neutron time-of-flight reflectometer GRAINS with horizontal sample plane at the IBR-2 reactor: Possibilities and prospects,” Cryst. Rep. 62, 1002–1008 (2017).

    Article  Google Scholar 

  34. V. I. Petrenko, Ye. N. Kosiachkin, L. A. Bulavin, and M. V. Avdeev, “Optimization of the initial interface configuration for in-situ neutron reflectometry experiments,” J. Surf. Invest. 14, 215–219 (2020).

    Article  Google Scholar 

  35. V. I. Petrenko, Ye. N. Kosiachkin, L. A. Bulavin, and M. V. Avdeev, “On enhancement of the adsorption-layer effect at the metallic electrode-liquid electrolyte interface in specular neutron reflectometry experiments,” J. Surf. Invest. 12, 651–657 (2018).

    Article  Google Scholar 

  36. M. V. Avdeev, A. A. Rulev, E. E. Ushakova, Ye. N. Kosiachkin, V. I. Petrenko, I. V. Gapon, E. Yu. Kataev, V. A. Matveev, L. V. Yashina, and D. M. Itkis, “On nanoscale structure of planar electrochemical interfaces metal/liquid lithium ion electrolyte by neutron reflectometry,” Appl. Surf. Sci. 486, 287–291 (2019).

    Article  ADS  Google Scholar 

  37. E. Yu. Kataev, I. V. Gapon, D. M. Itkis, A. I. Belova, and M. V. Avdeev, RF Patent No. 2654317 (2018).

  38. C. A. Bridges, X.-G. Sun, J. Zhao, M. P. Paranthaman, and S. Dai, “In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering,” J. Phys. Chem. C 116, 7701–7711 (2012).

    Article  Google Scholar 

  39. R. L. Sacci, J. Bañuelos, J. Leobardo, G. M. Veith, K. C. Littrell, Y. Q. Cheng, C. U. Wildgruber, L. L. Jones, A. J. Ramirez-Cuesta, G. Rother, and N. J. Dudney, “Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering,” J. Phys. Chem. C 119, 9816–9823 (2015).

    Article  Google Scholar 

  40. C. A. Bridges, X.-G. Sun, B. Guo, L. He, and S. Dai, “Observing framework expansion of ordered mesoporous hard carbon anodes with ionic liquid electrolytes via in situ small-angle neutron scattering,” ACS Energy Lett. 2, 1698–1704 (2017).

    Article  Google Scholar 

  41. C. J. Jafta, X.-G. Sun, G. M. Veith, G. V. Jensen, S. M. Mahurin, M. P. Paranthaman, S. Dai, and C. A. Bridges, “Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering,” Energy Environ. Sci. 12, 1866–1877 (2019).

    Article  Google Scholar 

  42. N. Paul, M. Wetjen, S. Busch, H. Gasteiger, and R. Gilles, “Contrast matched SANS for observing SEI and pore clogging in silicon-graphite anodes,” J. Electrochem. Soc. 166, A1051–A1054 (2019).

    Article  Google Scholar 

  43. C. J. Jafta, C. A. Bridges, Y. Bai, L. Geng, B. P. Thapaliya, H. M. Meyer, R. Essehli, W. T. Heller, and I. Belharouak, “Probing the Li4Ti5O12 interface upon lithium uptake by operando small angle neutron scattering,” ChemSusChem 13, 3654–3661 (2020).

    Article  Google Scholar 

  44. T. K. Zakharchenko, M. V. Avdeev, A. V. Sergeev, A. V. Chertovich, O. I. Ivankov, V. I. Petrenko, Y. Shao-Horn, L. V. Yashina, and D. M. Itkis, “Small-angle neutron scattering studies of pore filling in carbon electrodes: Mechanisms limiting lithium-air battery capacity,” Nanoscale 11, 6838–6845 (2019).

    Article  Google Scholar 

  45. A. I. Kuklin, O. I. Ivankov, A. V. Rogachev, D. V. Soloviov, A. K. Islamov, V. V. Skoi, Y. S. Kovalev, A. V. Vlasov, Y. L. Ryzykau, A. G. Soloviev, N. Kucerka, and V. I. Gordeliy, “Small-angle neutron scattering at the pulsed reactor IBR-2: Current status and prospects,” Cryst. Rep. 66, 231–241 (2021).

    Article  Google Scholar 

  46. T. K. Zakharchenko, A. V. Sergeev, A. D. Bashkirov, P. Neklyudova, A. Cervellino, D. M. Itkis, and L. V. Yashina, “Homogeneous nucleation of Li2O2 under Li-O2 battery discharge,” Nanoscale 12, 4591–4601 (2020).

    Article  Google Scholar 

  47. I. A. Bobrikov, N. Yu. Samoylova, D. A. Balagurov, O. Yu. Ivanshina, O. A. Drozhzhin, and A. M. Balagurov, “Neutron diffraction analysis of structural transformations in lithium-ion batteries,” Rus. J. Electrochem. 53, 178–186 (2017).

    Article  Google Scholar 

  48. I. A. Bobrikov, N. Yu. Samoylova, S. V. Sumnikov, O. Yu. Ivanshina, R. N. Vasin, A. I. Beskrovnyi, and A. M. Balagurov, “In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode,” J. Power Sources 372, 74–81 (2017).

    Article  ADS  Google Scholar 

  49. R. Eremin, P. Zolotarev, O. Yu. Ivanshina, and I. A. Bobrikov, “Li(Ni,Co,Al)O2 cathode delithiation: A combination of topological analysis, density functional theory, neutron diffraction, and machine learning techniques,” J. Phys. Chem. C 121, 28293–28305 (2017).

    Article  Google Scholar 

  50. R. Eremin, P. Zolotarev, and I. Bobrikov, “Delithiated states of layered cathode materials: Doping and dispersion interaction effects on the structure,” EPJ Web Conf. 177, 02001 (2018).

  51. P. Napolskiy, M. V. Avdeev, M. S. Yerdauletov, O. I. Ivankov, S. Bocharova, S. Ryzhenkova, B. Kaparova, K. Mironovich, D. Burlyaev, and V. A. Krivchenko, “On the use of carbon nanotubes in prototyping the high energy density Li-ion batteries,” Energy Technol. 8, 2000146 (2020).

    Article  Google Scholar 

  52. C. Suna, J. Liub, Y. Gonga, D. P. Wilkinsone, and J. Zhang, “Recent advances in all-solid-state rechargeable lithium batteries,” Nano Energy 33, 363–386 (2017).

    Article  Google Scholar 

  53. F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, “Review on solid electrolytes for all-solid-state lithium-ion batteries,” J. Power Sources 389, 198–213 (2018).

    Article  ADS  Google Scholar 

  54. V. A. Vizgalov, T. Nestler, L. A. Trusov, I. A. Bobrikov, O. I. Ivankov, M. V. Avdeev, A. Vyalikh, D. C. Meyer, and D. M. Itkis, “Enhancing lithium-ion conductivity in NASICON glass-ceramics by adding yttria,” CrystEngComm 20, 1375–1382 (2018).

    Article  Google Scholar 

  55. V. A. Vizgalov, T. Nestler, A. Vyalikh, I. A. Bobrikov, O. I. Ivankov, V. Petrenko, M. V. Avdeev, L. V. Yashina, and D. M. Itkis, “The role of glass crystallization processes in preparation of high Li-conductive NASICON-type ceramics,” CrystEngComm 21, 3106–3115 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The part of the review dealing with diffraction methods of research was supported by the Russian Science Foundation, project no. 21-12-00261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bobrikov.

Additional information

Translated by M. Potapov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrikov, I.A., Gapon, I.V. & Avdeev, M.V. Application of Neutron Scattering to Study Materials and Transition Processes in Lithium Energy Storage Devices at the IBR-2 Pulsed Reactor. Phys. Part. Nuclei 53, 674–696 (2022). https://doi.org/10.1134/S1063779622030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622030030

Navigation