Skip to main content
Log in

Production of nitrogen oxides in a positive column of a glow-type discharge in air flow

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper deals with the investigations of a low-current glow-type discharge in air flow as applied to the problem of nitrogen oxide production. The electrode configurations correspond to the classical coaxial plasmatron and to the so-called gliding arc. The discharge burns in a regime of constricted positive column with a typical current density from 47 to 120 A/cm2 and with the related electron density from 0.53⋅1014 to 2.3⋅1014 1/cm3. The gas temperature changes from 3000 to 3610 K. The described conditions provide a flow of NO molecules from the plasma column with the energetic cost for production of one molecule of (30–50) eV. Maximum content of NO molecules [NO] = 4 g/m3 (3500 ppm) was obtained. In spite of a rather high gas temperature, the plasma is still nonequilibrium. The high vibrational levels of the nitrogen molecules are populated, and the main channel of the nitric oxide production is associated with the reaction in which the vibrationally excited nitrogen interacts with atomic oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Malik MA (2016) Nitric oxide production by high voltage electrical discharges for medical uses: a review. Plasma Chem Plasma Process 36:737–766

    Article  CAS  Google Scholar 

  2. Vasilets VN (2019) Plasmachemical generation of nitric oxides in air plasmas for medical applications. Izv Vyssh Ucheb Zaved Khim Khim Tekhnol 62:4–13

    Article  CAS  Google Scholar 

  3. Korolev YD, Frants OB, Landl NV, Suslov AI (2012) Low-current plasmatron as a source of nitrogen oxide molecules. IEEE Trans Plasma Sci 40:2837–2842

    Article  CAS  Google Scholar 

  4. Korolev YD (2015) Low-current discharge plasma jets in a gas flow. Application of plasma jets. Russ J Gen Chem 85:1311–1325

    Article  CAS  Google Scholar 

  5. Janda M, Martisovits V, Hensel K, Machala Z (2016) Generation of antimicrobial NOx by atmospheric air transient spark discharge. Plasma Chem Plasma Process 36:767–781

    Article  CAS  Google Scholar 

  6. Namihira T, Tsukamoto S, Wang DY, Katsuki S, Hackam R, Okamoto K, Akiyama H (2000) Production of nitric monoxide using pulsed discharges for a medical application. IEEE Trans Plasma Sci 28:109–114

    Article  CAS  Google Scholar 

  7. Pei XK, Gidon D, Graves DB (2020) Specific energy cost for nitrogen fixation as NOx using DC glow discharge in air. J Phys D Appl Phys 53:044002

    Article  CAS  Google Scholar 

  8. Gamaleev V, Iwata N, Hiramatsu M, Ito M (2020) Tuning of operational parameters for effective production of nitric oxide using an ambient air rotating glow discharge jet. Jpn J Appl Phys 59:SHHF04

    Article  CAS  Google Scholar 

  9. Britun N, Gamaleev V, Hori M (2021) Evidence of near-the-limit energy cost NO formation in atmospheric spark discharge. Plasma Sources Sci Technol 30:08LT02

    Article  CAS  Google Scholar 

  10. Lei XY, Cheng H, Nie LL, Xian YB, Lu XP (2022) Plasma-catalytic NO (x) production in a three-level coupled rotating electrodes air plasma combined with nano-sized TiO2. J Phys D Appl Phys 55:115201

    Article  CAS  Google Scholar 

  11. Chen H, Wu AJ, Mathieu S, Gao PH, Li XD, Xu BZ, Yan JH, Tu X (2021) Highly efficient nitrogen fixation enabled by an atmospheric pressure rotating gliding arc. Plasma Process Polym 18:e2000200

    Article  CAS  Google Scholar 

  12. Malik MA, Jiang CQ, Heller R, Lane J, Hughes D, Schoenbach KH (2016) Ozone-free nitric oxide production using an atmospheric pressure surface discharge - A way to minimize nitrogen dioxide co-production. Chem Eng J 283:631–638

    Article  CAS  Google Scholar 

  13. Kalra CS, Gutsol AF, Fridman AA (2005) Gliding arc discharges as a source of intermediate plasma for methane partial oxidation. IEEE Trans Plasma Sci 33:32–41

    Article  CAS  Google Scholar 

  14. Korolev YD, Frants OB, Geyman VG, Landl NV, Kasyanov VS (2011) Low-current “gliding arc” in air flow. IEEE Trans Plasma Sci 39:3319–3225

    Article  CAS  Google Scholar 

  15. Zhu JJ, Ehn A, Gao JL, Kong CD, Alden M, Salewski M, Leipold F, Kusano Y, Li ZS (2017) Translational, rotational, vibrational and electron temperatures of a gliding arc discharge. Opt Express 25:20243–20257

    Article  CAS  PubMed  Google Scholar 

  16. Zhu JJ, Gao JL, Ehn A, Alden M, Larsson A, Kusano Y, Li ZS (2017) Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure. Phys Plasmas 24:013514

    Article  CAS  Google Scholar 

  17. Zhang C, Shao T, Yan P, Zhou Y (2014) Nanosecond-pulse gliding discharges between point-to-point electrodes in open air. Plasma Sources Sci Technol 23:035004

    Article  Google Scholar 

  18. Zhang C, Shao T, Ma H, Ren C, Yan P, Zhou Y (2014) Comparison of µs- and ns-pulse gliding discharges in air flow. IEEE Trans Plasma Sci 42:2354–2355

    Article  CAS  Google Scholar 

  19. Winter J, Brandenburg R, Weltmann KD (2015) Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol 24:064001

    Article  CAS  Google Scholar 

  20. Korolev YD, Nekhoroshev VO, Frants OB, Landl NV, Suslov AI, Bolotov AV (2019) Features of the current sustainment in a low-current discharge in airflow. Plasma Chem Plasma Process 39:1519–1532

    Article  CAS  Google Scholar 

  21. Korolev YD, Nekhoroshev VO, Frants OB, Landl NV, Suslov, Geyman VG (2019) Nonsteady-state processes in a low-current discharge in airflow and formation of a plasma jet. J Phys Commun 3:085002

    Article  CAS  Google Scholar 

  22. Akishev Y, Aponin G, Petryakov A, Trushkin N (2018) On the composition of reactive species in air plasma jets and their influence on the adhesion of polyurethane foam to low-pressure polyethylene. J Phys D Appl Phys 51:274006

    Article  CAS  Google Scholar 

  23. Pawlat J, Terebun P, Kwiatkowski M, Tarabova B, Koval’ova Z, Kucerova K, Machala Z, Janda M, Hensel K (2019) Evaluation of oxidative species in gaseous and liquid phase generated by mini-gliding arc discharge. Plasma Chem Plasma Process 39:627–642

    Article  CAS  Google Scholar 

  24. Akishev YS (2019) Non-thermal plasma at atmospheric pressure and its opportunities for applications. Izv Vyssh Ucheb Zaved Khim Khim Tekhnol 62:26–60

    Article  CAS  Google Scholar 

  25. Korolev YD, Mesyats GA, Yarosh AM (1987) Film etching by particles produced by a pulsed bulk discharge in CF4. High Energy Chem 21:389

    Google Scholar 

  26. Kusano Y, Bardenshtein A, Morgen P (2018) Fluoropolymer coated alanine films treated by atmospheric pressure plasmas - In comparison with gamma irradiation. Plasma Processes Polym 15:e1700131

    Article  CAS  Google Scholar 

  27. Liu X, Wang CC, Liu JY, Wang GS, Yang ZK, Chen FZ, Song JL (2019) Comparative study of surface modification of polyethylene by parallel-field and cross-field atmospheric pressure plasma jets. J Appl Phys 125:123301

    Article  CAS  Google Scholar 

  28. Darvish F, Mostofi SN, Khani M, Eslami E, Shokri B, Mohseni M, Ebrahimi M, Alizadeh M, Dee CF (2020) Direct plasma treatment approach based on non-thermal gliding arc for surface modification of biaxially-oriented polypropylene with post-exposure hydrophilicity improvement and minus aging effects. Appl Surf Sci 509:144815

    Article  CAS  Google Scholar 

  29. Wang RX, Xu H, Zhao Y, Zhu WD, Zhang C, Shao T (2019) Spatial-temporal evolution of a radial plasma jet array and its interaction with material. Plasma Chem Plasma Process 39:187–203

    Article  CAS  Google Scholar 

  30. Korolev YD, Frants OB, Landl NV, Kasyanov VS, Galanov SI, Sidorova OI, Kim Y, Rosocha LA, Matveev IB (2012) Propane oxidation in a plasma torch of a low-current nonsteady-state plasmatron. IEEE Trans Plasma Sci 40:535–542

    Article  CAS  Google Scholar 

  31. Macheret SO, Shneider MN, Miles RB (2020) Plasma-assisted fuel atomization and multipoint ignition for scramjet engines. J Propul Power 36:1–6

    Article  Google Scholar 

  32. Pinto AJ, Sbampato ME, Sagas JC, Lacava PT (2021) Gliding arc discharge for emission control in swirl fuel-lean non-premixed combustion. Combust Sci Technol. https://doi.org/10.1080/00102202.2021.1990896

  33. Choi S, Kang H, Kim KT, Song YH, Lee DH (2021) Ignition process of diesel spray based on behavior of rotating gliding arc in plasma reformer. Plasma Chem Plasma Process 41:1021–1037

    Article  CAS  Google Scholar 

  34. Martin-del-Campo J, Coulombe S, Kopyscinski J (2020) Influence of operating parameters on plasma-assisted dry reforming of methane in a rotating gliding arc reactor. Plasma Chem Plasma Process 40:857–881

    Article  CAS  Google Scholar 

  35. Zhu FS, Li XD, Zhang H, Wu AJ, Yan JH, Ni MJ, Zhang HW, Buekens A (2016) Destruction of toluene by rotating gliding arc discharge. Fuel 176:78–85

    Article  CAS  Google Scholar 

  36. Xiong Y, Zhang Q, Wandell R, Bresch S, Wang HH, Locke BR, Tang YN (2019) Synergistic 1,4-dioxane removal by non-thermal plasma followed by biodegradation. Chem Eng J 361:519–527

    Article  CAS  Google Scholar 

  37. Tarkwa JB, Acayanka E, Sop BT, Kenyim FB, Nzali S, Laminsi S (2021) Effect of gliding arc plasma-induced uv light during the photo-fenton oxidation of 4-chlorophenol in aqueous solution. Plasma Chem Plasma Process 41:989–1007

    Article  CAS  Google Scholar 

  38. Zhang QZ, Wang WZ, Thille C, Bogaerts A (2020) H2S decomposition into H(2) and S(2) by plasma technology: comparison of gliding arc and microwave plasma. Plasma Chem Plasma Process 40:113–1187

    Google Scholar 

  39. Trushkin AN, Grushin ME, Kochetov IV, Trushkin NI, Akishev YS (2013) Decomposition of toluene in a steady-state atmospheric-pressure glow discharge. Plasma Phys Rep 39:167–182

    Article  CAS  Google Scholar 

  40. Okubo M, Kuwahara T (2019) New Technologies for Emission Control in Marine Diesel Engines. Butterworth-Heinemann imprint of Elsevier

  41. Laroussi M (2015) Low-temperature plasma jet for biomedical applications: a review. IEEE Trans Plasma Sci 43:703–712

    Article  CAS  Google Scholar 

  42. Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21:043001

    Article  CAS  Google Scholar 

  43. Graves DB (2014) Low temperature plasma biomedicine: A tutorial review. Phys Plasmas 21:080901

    Article  CAS  Google Scholar 

  44. Jaworek A, Ganan-Calvo AM, Machala Z (2019) Low temperature plasmas and electrosprays. J Phys D Appl Phys 52:233001

    Article  CAS  Google Scholar 

  45. Takehana K, Kuroki T, Okubo M (2018) Evaluation on nitrogen oxides and nanoparticle removal and nitrogen monoxide generation using a wet-type nonthermal plasma reactor. J J Phys D Appl Phys 51:204002

    Article  CAS  Google Scholar 

  46. Korolev YD, Frants OB, Landl NV, Geyman VG, Suslov AI (2017) Parameters of a positive column in a gliding glow discharge in air. Phys Plasmas 24:103526

    Article  CAS  Google Scholar 

  47. Korolev YD, Frants OB, Nekhoroshev VO, Suslov AI, Kas’yanov VS, Shemyakin IA, Bolotov AV (2016) Simulation of nonstationary phenomena in atmospheric-pressure glow discharge. Plasma Phys Rep 42:592–600

    Article  CAS  Google Scholar 

  48. Fridman A (2008) Plasma Chemistry. Cambridge University Press, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation under Project No. 22-29-00703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Nekhoroshev, V.O. et al. Production of nitrogen oxides in a positive column of a glow-type discharge in air flow. Plasma Chem Plasma Process 42, 1187–1200 (2022). https://doi.org/10.1007/s11090-022-10262-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10262-2

Keywords

Navigation