Skip to main content
Log in

Structure and Magnetic Properties of 09G2S Steel Obtained by the Selective Laser Melting Method

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure, magnetic, and electrical properties of the 09G2S steel prepared by selective laser melting (3D steel) and casting are studied. It is found that the 3D 09G2S steel becomes similar in structure to the cast steel after normalization at 980°C for 30 min; in this case, the hardness decreases by 70% as compared to the annealed 3D steel. The surface stresses are maximal in the 3D steel after its preparation and 3-hour annealing. The normalization enables us to substantially decrease the residual stresses, which is confirmed by the X-ray diffraction and magnetometric measurements. The coercive force and the remanence of the normalized 09G2S steel are comparable with similar properties of the normalized cast 09G2S steel, which demonstrates the similarity of the structural and stress–strain states of the cast and 3D steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing, Appl. Phys. Rev. 2, 041101 (2015).

    Article  ADS  Google Scholar 

  2. J. Gunasekaran, P. Sevvel, and J. Solomon, Mater. Today: Proc. 37, 252 (2021).

    Google Scholar 

  3. E. O. Olakanmi, J. Mater. Proc. Technol. 213, 1387 (2013).

    Article  Google Scholar 

  4. J. Zhang, D. Gu, Y. Yang, H. Zhang, H. Chen, D. Dai, and K. Lin, Engineering 5, 736 (2019).

    Article  Google Scholar 

  5. Zh. Zhu, W. Li, Q. Bau Nguyen, X. An, W. Lu, Zh. Li, Fern Lan Ng, Sh. Mui Ling Nai, and J. Wei, Addit. Manuf. 35, 101300 (2020).

    Google Scholar 

  6. X. D. Nong and X. L. Zhou, Mater. Charact. 174, 111012 (2021).

    Article  Google Scholar 

  7. Qi Shi, F. Qin, K. Li, X. Liu, and Ge Zhou, Mater. Sci. Eng. A 819, 141035 (2021).

    Article  Google Scholar 

  8. P. Peng, K. Wang, W. Wang, P. Han, T. Zhang, Q. Liu, Sh. Zhang, H. Wang, Ke Qiao, and J. Liu, Mater. Charact. 163, 110283 (2020).

    Article  Google Scholar 

  9. M. Ghayoor, K. Lee, Y. He, Chih-hung Chang, B. K. Paul, and S. Pasebani, Addit. Manuf. 32, 101011 (2020).

    Google Scholar 

  10. S. Waqar, K. Guo, and J. Sun, J. Manuf. Process. 66, 81 (2021).

    Article  Google Scholar 

  11. Ze-Chen Fang, Zhi-Lin Wu, Chen-Guang Huang, and Chen-Wu Wu, Opt. Laser Technol. 129, 106283 (2020).

    Article  Google Scholar 

  12. F. Schmeiser, E. Krohmer, N. Schell, E. Uhlmann, and W. Reimers, Addit. Manuf. 32, 101028 (2020).

    Google Scholar 

  13. V. V. Klyuev, V. F. Muzhitskii, E. S. Gorkunov, and V. E. Shcherbinin, Nondestructive Testing, The Handbook, Vol. 6, Part 1: Magnetic Control Methods (Moscow, 2006) [in Russian].

    Google Scholar 

  14. V. F. Novikov, V. A. Zakharov, A. I. Ul’yanov, S. V. Sorokina, and M. E. Kudryashov, Russ. J. Nondestr. Test. 46, 520 (2010).

    Article  Google Scholar 

  15. V. G. Kuleev and T. P. Tsar’kova, Phys. Met. Metallogr. 104, 461 (2007).

    Article  ADS  Google Scholar 

  16. A. N. Stashkov, E. A. Schapova, A. P. Nichipuruk, and A. V. Korolev, NDT & E Int. 118, 102398 (2021).

    Article  Google Scholar 

  17. A. N. Stashkov, A. P. Nichipuruk, V. G. Kuleev, and E. A. Schapova, J. Phys.: Conf. Ser. 1389, 012032 (2019)

    Google Scholar 

  18. A. P. Nichipuruk, A. N. Stashkov, V. G. Kuleev, E. A. Schapova, and A. A. Osipov, Russ. J. Nondestr. Test. 11, 772 (2017).

    Article  Google Scholar 

  19. E. V. Rozenfel’d and A. P. Nichipuruk, Phys. Met. Metallogr. 84, 587 (1997).

    Google Scholar 

  20. A. P. Nichipuruk and E. V. Rozenfel’d, Phys. Met. Metallogr. 84, 616 (1997).

    Google Scholar 

  21. E. V. Rozenfel’d and A. P. Nichipuruk, Phys. Met. Metallogr. 82, 34 (1996).

    Google Scholar 

  22. P. S. Prevey, X-ray Diffraction Residual Stress Techniques, Metals Handbook (Am. Soc. Met., Metals Park, OH, 1986), Vol. 10, p. 380.

    Google Scholar 

  23. T. Simson, A. Emmel, A. Dwars, and J. Böhm, Addit. Manuf. 17, 183 (2017).

    Google Scholar 

  24. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  ADS  Google Scholar 

  25. GOST (State Standard) No. 57172-2016 Determination of surface residual stresses by nanoidentification (2016).

Download references

Funding

The reported study was funded by RFBR and BRFBR, project number (project no. 20-58-00015 Bel_a) in the framework of state task of the Ministry of Higher Education and Science of the Russian Federation (theme “Diagnostics”, no. AAAA-A18-118020690196-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Stashkov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichipuruk, A.P., Stashkov, A.N., Shchapova, E.A. et al. Structure and Magnetic Properties of 09G2S Steel Obtained by the Selective Laser Melting Method. Phys. Solid State 64, 148–153 (2022). https://doi.org/10.1134/S1063783422030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422030076

Keywords:

Navigation