Skip to main content
Log in

Nature and purpose of visual artifacts in design science research

  • Original Article
  • Published:
Information Systems and e-Business Management Aims and scope Submit manuscript

Abstract

Design science is a recognized information systems research paradigm, which is fundamentally centered on problem solving through technology design. The design process involves reflexive thinking and exploration and is usually supported by a variety of visual artifacts, which facilitate structuring, combining, and communicating design knowledge. Visual artifacts are among possible main contributions of a design science endeavor. In this study, we analyze the nature and purpose of such visual artifacts. We adopt semiotics and a theory of visualization of thought, in combination with a literature review, to elaborate a framework of design science visual artifacts. We consider three domains of analysis: intentionality, form-and-function, and visual scheme. We demonstrate the applicability of the framework using two examples. Finally, we define a set of properties that researchers should consider when creating and using visual artifacts in design science: transparency of the relationship between representation and object, self-sufficiency of the visual artifact, and consistency of knowledge communication. The proposed framework helps researchers understand what properties should be focused on when developing their visual artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

List of reviewed artifacts provided in annex.

Code availability

Not applicable.

Notes

  1. Goel explicitly states that he has not proposed a theory, but a theoretical perspective compatible with different theories over visualization of thought (Goel 1995, p. 24).

References

  • Abbasi A, Chen H (2008) CyberGate: a design framework and system for text analysis of computer-mediated communication. MIS Q 32(4):811–837

    Article  Google Scholar 

  • Abbasi A, Albrecht C, Vance A, Hansen J (2012) Metafraud: a meta-learning framework for detecting financial fraud. MIS Q 36(4):1293-A12. https://doi.org/10.2307/41703508

    Article  Google Scholar 

  • Abbasi A, Zhou Y, Deng S, Zhang P (2018) Text analytics to support sense-making in social media: a language-action perspective. MIS Q 42(2):427-A38

    Article  Google Scholar 

  • Abbasi A, Li J, Adjeroh D, Abate M, Zheng W (2019) Don’t mention it? Analyzing user-generated content signals for early adverse event warnings. Inf Syst Res 30(3):1007–1028. https://doi.org/10.1287/isre.2019.0847

    Article  Google Scholar 

  • Albert T, Goes P, Gupta A (2004) Gist: a model for design and management of content and interactivity of customer-centric web sites. MIS Q 28(2):161–182. https://doi.org/10.2307/25148632

    Article  Google Scholar 

  • Allen G, March S (2012) A research note on representing part-whole relations in conceptual modeling. MIS Q 36:945–964

    Article  Google Scholar 

  • Alter S (2015) The concept of ‘IT artifact’ has outlived its usefulness and should be retired now. Inf Syst J 25(1):47–60

    Article  Google Scholar 

  • Arnott D (2006) Cognitive biases and decision support systems development: a design science approach. Inf Syst J 16(1):55–78. https://doi.org/10.1111/j.1365-2575.2006.00208.x

    Article  Google Scholar 

  • Ashby W, Goldstein J (2011) Variety, constraint, and the law of requisite variety. Emerg Complexity Org 13(12):190

    Google Scholar 

  • Astor P, Adam M, Jerčić P, Schaaff K, Weinhardt C (2013) Integrating biosignals into information systems: a neurois tool for improving emotion regulation. J Manag Inf Syst 30(3):247–278. https://doi.org/10.2753/MIS0742-1222300309

    Article  Google Scholar 

  • Avdiji H, Elikan D, Missonier S, Pigneur Y (2020) A design theory for visual inquiry tools. J Assoc Inf Syst 21(3):3

    Google Scholar 

  • Baskerville R, Myers M (2015) Design ethnography in information systems. Inf Syst J 25(1):23–46. https://doi.org/10.1111/isj.12055

    Article  Google Scholar 

  • Baskerville R, Kaul M, Storey V (2015) Genres of inquiry in design-science research: justification and evaluation of knowledge production. MIS Q 39(3):541–564

    Article  Google Scholar 

  • Baskerville R, Baiyere A, Gregor S, Hevner A, Rossi M (2018a) Design science research contributions: finding a balance between artifact and theory. J Assoc Inf Syst 19(5):358–376

    Google Scholar 

  • Baskerville R, Kaul M, Storey V (2018b) Aesthetics in design science research. Eur J Inf Syst 27(2):140–153

    Article  Google Scholar 

  • Baskerville R, Vaishnavi V (2016) Pre-theory design frameworks and design theorizing. In: 49th hawaii international conference on system sciences, 4464–4473

  • Baskerville R, Kaul M, Storey V (2011) Unpacking the duality of design science. In: Thirty second international conference on information systems

  • Becker J, Beverungen D, Knackstedt R, Rauer H, Sigge D (2014) On the ontological expressiveness of conceptual modeling grammars for service productivity management. IseB 12(3):337–365

    Article  Google Scholar 

  • Bera P, Burton-Jones A, Wand Y (2014) Research note: how semantics and pragmatics interact in understanding conceptual models. Inf Syst Res 25(2):401–419

    Article  Google Scholar 

  • Beynon-Davies P (2018) What’s in a face? Making sense of tangible information systems in terms of Peircean semiotics. Eur J Inf Syst 27(3):295–314

    Article  Google Scholar 

  • Bietti L, Tilston O, Bangerter A (2018). Storytelling as adaptive collective sensemaking. Topics in Cognitive Science. 1–23

  • Blackwell A, Richards C (2019) A pattern language for the design of diagrams. Elements of diagramming: design, theories analyses and methods. Taylor and Francis, Milton Park

    Google Scholar 

  • Blackwell A, Britton C, Cox A, Green T, Gurr C, Kadoda G, Kutar M, Loomes M, Nehaniv C, Petre M (2001) Cognitive dimensions of notations: design tools for cognitive technology. International conference on cognitive technology. Springer, Berlin, pp 325–341

    Google Scholar 

  • Blackwell A, Church L, Plimmer B, Gray D (2008) Formality in sketches and visual representation: some informal reflections. Creat Res J 11–18

  • Boxenbaum E, Jones C, Meyer R, Svejenova S (2018) Towards an articulation of the material and visual turn in organization studies. Org Stud 39(5–6):597–616

    Article  Google Scholar 

  • Brandt T, Feuerriegel S, Neumann D (2018) Modeling interferences in information systems design for cyberphysical systems: Insights from a smart grid application. Eur J Inf Syst 27(2):207–220. https://doi.org/10.1057/s41303-016-0030-1

    Article  Google Scholar 

  • Brödner P (2019) Coping with Descartes’ error in information systems. AI Soc 34(2):203–213

    Article  Google Scholar 

  • Burton-Jones A, Recker J, Indulska M, Green P, Weber R (2017) Assessing representation theory with a framework for pursuing success and failure. MIS Q 41(4):1307–1333

    Article  Google Scholar 

  • Cascavilla G, Conti M, Schwartz D, Yahav I (2018) The insider on the outside: a novel system for the detection of information leakers in social networks. Eur J Inf Syst 27(4):470–485. https://doi.org/10.1080/0960085X.2017.1387712

    Article  Google Scholar 

  • Chanson M, Bogner A, Bilgeri D, Fleisch E, Wortmann F (2019) Blockchain for the IoT: privacy-preserving protection of sensor data. J Assoc Inf Syst 20(9):1274–1309

    Google Scholar 

  • Chatterjee S, Byun J, Dutta K, Pedersen R, Pottathil A, Xie H (2018) Designing an Internet-of-Things (IoT) and sensor-based in-home monitoring system for assisting diabetes patients: iterative learning from two case studies. Eur J Inf Syst 27(6):670–685. https://doi.org/10.1080/0960085X.2018.1485619

    Article  Google Scholar 

  • Chaturvedi A, Dolk D, Drnevich P (2011) Design principles for virtual worlds. MIS Q 35(3):673–684. https://doi.org/10.2307/23042803

    Article  Google Scholar 

  • Chau M, Xu J (2012) Business intelligence in blogs: understanding consumer interactions and communities. MIS Q 36(4):1189–1216. https://doi.org/10.2307/41703504

    Article  Google Scholar 

  • Chen R, Sharman R, Rao H, Upadhyaya S (2013) Data model development for fire related extreme events: an activity theory approach1. MIS Q 37(1):125–147

    Article  Google Scholar 

  • Cheng X, Fu S, Druckenmiller D (2016) Trust development in globally distributed collaboration: a case of U.S. and Chinese mixed teams. J Manag Inf Syst 33(4):978–1007. https://doi.org/10.1080/07421222.2016.1267521

    Article  Google Scholar 

  • Choi J, Nazareth D, Jain H (2010) Implementing service-oriented architecture in organizations. J Manag Inf Syst 26(4):253–286. https://doi.org/10.2753/MIS0742-1222260409

    Article  Google Scholar 

  • Coenen T, Coertjens L, Vlerick P, Lesterhuis M, Mortier AV, Donche V, Ballon P, Maeyer S (2018) An information system design theory for the comparative judgement of competences. Eur J Inf Syst 27(2):248–261. https://doi.org/10.1080/0960085X.2018.1445461

    Article  Google Scholar 

  • Currim F, Ram S (2012) Modeling spatial and temporal set-based constraints during conceptual database design. Inf Syst Res 23(1):109–128. https://doi.org/10.1287/isre.1100.0306

    Article  Google Scholar 

  • D’Aubeterre F, Singh R, Iyer L (2008) A semantic approach to secure collaborative inter-organizational ebusiness processes (SSCIOBP). J Assoc Inf Syst 9(3):231–266

    Google Scholar 

  • Evermann J (2005) Towards a cognitive foundation for knowledge representation. Inf Syst J 15(2):147–178

    Article  Google Scholar 

  • Fahmideh M, Daneshgar F, Rabhi F, Beydoun G (2019) A generic cloud migration process model. Eur J Inf Syst 28(3):233–255

    Article  Google Scholar 

  • Friedman A, Thellefsen M (2011) Concept theory and semiotics in knowledge organization. J Doc. https://doi.org/10.1108/00220411111145034

    Article  Google Scholar 

  • Galle P (2008) Candidate worldviews for design theory. Des Stud 29(3):267–303

    Article  Google Scholar 

  • Ghajargar M, Wiberg M (2018) Thinking with interactive artifacts: reflection as a concept in design outcomes. Des Issues 34(2):48–63

    Article  Google Scholar 

  • Goel V (1995) Sketches of thought. The MIT Press, Cambridge

    Book  Google Scholar 

  • Goel V, Pirolli P (1992) The structure of design problem spaces. Cogn Sci 16(3):395–429

    Article  Google Scholar 

  • Goldkuhl G (2013) From ensemble view to ensemble artefact: an inquiry on conceptualisations of the IT artefact. Syst Signs Actions 7(1):49–72

    Google Scholar 

  • Green T (1989) Cognitive dimensions of notations. People and Computers. 443–460

  • Gregor S, Hevner A (2011) Introduction to the special issue on design science. IseB 9(1):1–9

    Article  Google Scholar 

  • Gregor S, Hevner A (2013) Positioning and presenting design science research for maximum impact. MIS Q 37(2):337–356

    Article  Google Scholar 

  • Gregor S, Jones D (2007) The anatomy of a design theory. J Assoc Inf Syst 8(5):312–335

    Google Scholar 

  • Gregor S, Imran A, Turner T (2014) A ‘sweet spot’ change strategy for a least developed country: leveraging e-Government in Bangladesh. Eur J Inf Syst 23(6):655–671

    Article  Google Scholar 

  • Grover V, Lyytinen K (2015) New state of play in information systems research. MIS Q 39(2):271–296

    Article  Google Scholar 

  • Guo X, Wei Q, Chen G, Zhang J, Qiao D (2017) Extracting representative information on intra-organizational blogging platforms. MIS Q 41(4):1105

    Article  Google Scholar 

  • Hevner A, March S, Park J, Ram S (2004) Design science in information systems research. MIS Q 28(1):75–105

    Article  Google Scholar 

  • Huber R, Püschel LC, Röglinger M (2019) Capturing smart service systems: development of a domain-specific modelling language. Inf Syst J 29(6):1207–1255. https://doi.org/10.1111/isj.12269

    Article  Google Scholar 

  • Iivari J (2017) Information system artefact or information system application: that is the question. Inf Syst J 27(6):753–774. https://doi.org/10.1111/isj.12121

    Article  Google Scholar 

  • Iivari J (2020) A critical look at theories in design science research. J Assoc Inf Syst 21(3):502–519

    Google Scholar 

  • Ji W, Liqiang H, Zhao JL (2019) Operationalizing regulatory focus in the digital age: evidence from an e-commerce context. MIS Q 43(3):745-A16. https://doi.org/10.25300/MISQ/2019/14420

    Article  Google Scholar 

  • John B, Chua A, Goh D, Wickramasinghe N (2016) Graph-based cluster analysis to identify similar questions: a design science approach. J Assoc Inf Syst 17(9):590–613

    Google Scholar 

  • Keith M, Demirkan H, Goul M (2013) Service-oriented methodology for systems development. J Manag Inf Syst 30(1):227–260. https://doi.org/10.2753/MIS0742-1222300107

    Article  Google Scholar 

  • Ketter W, Peters M, Collins J, Gupta A (2016a) A Multiagent competitive gaming platform to address societal challenges. MIS Q 40(2):447–460

    Article  Google Scholar 

  • Ketter W, Peters M, Collins J, Gupta A (2016b) Competitive benchmarking: an is research approach to address wicked problems with big data and analytics. MIS Q 40(4):1057–1089

    Article  Google Scholar 

  • Klein G, Moon B, Hoffman R (2006) Making sense of sensemaking 2: a macrocognitive model. IEEE Intell Syst 21(5):88–92

    Article  Google Scholar 

  • Klier J, Klier M, Thiel L, Agarwal R (2019) Power of mobile peer groups: a design-oriented approach to address youth unemployment. J Manag Inf Syst 36(1):158–193. https://doi.org/10.1080/07421222.2018.1550557

    Article  Google Scholar 

  • Kloör B, Monhof M, Beverungen D, Braäer S (2018) Design and evaluation of a model-driven decision support system for repurposing electric vehicle batteries. Eur J Inf Syst 27(2):171–188. https://doi.org/10.1057/s41303-017-0044-3

    Article  Google Scholar 

  • Kolfschoten G, Vreede G (2009) A design approach for collaboration processes: a multimethod design science study in collaboration engineering. J Manag Inf Syst 26(1):225–256. https://doi.org/10.2753/MIS0742-1222260109

    Article  Google Scholar 

  • Kolkowska E, Karlsson F, Hedström K (2017) Towards analysing the rationale of information security non-compliance: devising a value-based compliance analysis method. J Strateg Inf Syst 26(1):39–57. https://doi.org/10.1016/j.jsis.2016.08.005

    Article  Google Scholar 

  • Kuechler B, Vaishnavi V (2008) On theory development in design science research: anatomy of a research project. Eur J Inf Syst 17(5):489–504

    Article  Google Scholar 

  • Kuechler W, Vaishnavi V (2012) A framework for theory development in design science research: multiple perspectives. J Assoc Inf Syst 13(6):395–423

    Google Scholar 

  • Langley A, Ravasi D (2019) Visual artifacts as tools for analysis and theorizing. The production of managerial knowledge and organizational theory new approaches to writing, producing and consuming theory. Emerald Publishing Limited, Bingley

    Google Scholar 

  • Lee J (2016) Reflections on ICT-enabled bright society research. Inf Syst Res 27(1):1–5. https://doi.org/10.1287/isre.2016.0627

    Article  Google Scholar 

  • Lycett M, Radwan O (2019) Developing a quality of experience (QoE) model for web applications. Inf Syst J 29(1):175–199. https://doi.org/10.1111/isj.12192

    Article  Google Scholar 

  • March S, Smith G (1995) Design and natural science research on information technology. Decis Support Syst 15(4):251–266

    Article  Google Scholar 

  • Mastrogiacomo S, Missonier S, Bonazzi R (2014) Talk before it’s too late: reconsidering the role of conversation in information systems project management. J Manag Inf Syst 31(1):47–78. https://doi.org/10.2753/MIS0742-1222310103

    Article  Google Scholar 

  • McKinney E Jr, Yoos C (2010) Information about information: a taxonomy of views. MIS Q 34:329–344

    Article  Google Scholar 

  • Meredith J (1993) Theory building through conceptual methods. Int J Oper Prod Manag 13(5):3–11

    Article  Google Scholar 

  • Meth H, Mueller B, Maedche A (2015) Designing a requirement mining system. J Assoc Inf Syst 16(9):799–837

    Google Scholar 

  • Miles M, Huberman A, Saldaña J (2014) Qualitative data analysis: a methods sourcebook. Sage Publications, Thousand Oaks

    Google Scholar 

  • Mingers J, Willcocks L (2014) An integrative semiotic framework for information systems: the social, personal and material worlds. Inf Organ 24(1):48–70

    Article  Google Scholar 

  • Mingers J, Willcocks L (2017) An integrative semiotic methodology for IS research. Inf Organ 27(1):17–36

    Article  Google Scholar 

  • Mullarkey M, Hevner A (2019) An elaborated action design research process model. Eur J Inf Syst 28(1):6–20

    Article  Google Scholar 

  • Närman P, Holm H, Ekstedt M, Honeth N (2013) Using enterprise architecture analysis and interview data to estimate service response time. J Strateg Inf Syst 22(1):70–85. https://doi.org/10.1016/j.jsis.2012.10.002

    Article  Google Scholar 

  • Nickerson J, Corter J, Tversky B, Rho Y-J, Zahner D, Yu L (2013) Cognitive tools shape thought: diagrams in design. Cogn Process 14(3):255–272

    Article  Google Scholar 

  • Niederman F, March S (2019) The “theoretical lens” concept: we all know what it means, but do we all know the same thing? Commun Assoc Inf Syst 44(1):1

    Google Scholar 

  • Niehaves B, Ortbach K (2016) The inner and the outer model in explanatory design theory: the case of designing electronic feedback systems. Eur J Inf Syst 25(4):303–316. https://doi.org/10.1057/ejis.2016.3

    Article  Google Scholar 

  • Nonaka I, Takeuchi H (1995) The knowledge-creating company: how Japanese companies create the dynamics of innovation. Oxford University Press, Oxford

    Google Scholar 

  • Nunamaker J, Chen M, Purdin T (1990) Systems development in information systems research. J Manag Inf Syst 7(3):89–106

    Article  Google Scholar 

  • Oetzel M, Spiekermann S (2014) A systematic methodology for privacy impact assessments: a design science approach. Eur J Inf Syst 23(2):126–150. https://doi.org/10.1057/ejis.2013.18

    Article  Google Scholar 

  • Paré G, Trudel M, Jaana M, Kitsiou S (2015) Synthesizing information systems knowledge: a typology of literature reviews. Inf Manag 52(2):183–199

    Article  Google Scholar 

  • Paré G, Tate M, Johnstone D, Kitsiou S (2016) Contextualizing the twin concepts of systematicity and transparency in information systems literature reviews. Eur J Inf Syst 25(6):493–508

    Article  Google Scholar 

  • Parsons J, Ralph P (2014) Generating effective recommendations using viewing-time weighted preferences for attributes. J Assoc Inf Syst 15(8):484–513

    Google Scholar 

  • Peffers K, Tuunanen T, Rothenberger M, Chatterjee S (2007) A design science research methodology for information systems research. J Manag Inf Syst 24(3):45–77

    Article  Google Scholar 

  • Piccoli G, Rodriguez J, Palese B, Bartosiak M (2019) Feedback at scale: designing for accurate and timely practical digital skills evaluation. Eur J Inf Syst. https://doi.org/10.1080/0960085X.2019.1701955

    Article  Google Scholar 

  • Piel J, Hamann J, Koukal A, Breitner M (2017) Promoting the system integration of renewable energies: toward a decision support system for incentivizing spatially diversified deployment. J Manag Inf Syst 34(4):994–1022. https://doi.org/10.1080/07421222.2017.1394044

    Article  Google Scholar 

  • Popper K (1979) Three worlds. The Tanner lecture on human values

  • Pries-Heje J, Baskerville R (2008) The design theory nexus. MIS Q 32(4):731–755

    Article  Google Scholar 

  • Ravasi D (2017) Visualizing our way through theory building. J Manag Inq 26(2):240–243

    Article  Google Scholar 

  • Recker J, Indulska M, Green P, Burton-Jones A, Weber R (2019) Information systems as representations: a review of the theory and evidence. J Assoc Inf Syst 20(6):5

    Google Scholar 

  • Reinecke K, Bernstein A (2013) Knowing what a user likes: a design science approach to interfaces that automatically adapt to culture. MIS Q 37(2):427-A11

    Article  Google Scholar 

  • Roussinov D, Chau M (2008) Combining information seeking services into a meta supply chain of facts. J Assoc Inf Syst 9(3):175–199

    Google Scholar 

  • Schmeil A, Eppler M, de Freitas S (2012) A Structured approach for designing collaboration experiences for virtual worlds. J Assoc Inf Syst 13(10):836–860

    Google Scholar 

  • Schön D, Wiggins G (1992) Kinds of seeing and their functions in designing. Des Stud 13(2):135–156

    Article  Google Scholar 

  • Schön D (1983) The reflective practitioner: how professionals think in action. Basic Books

  • Seidel S, Kruse LC, Székely N, Gau M, Stieger D (2018) Design principles for sensemaking support systems in environmental sustainability transformations. Eur J Inf Syst 27(2):221–247. https://doi.org/10.1057/s41303-017-0039-0

    Article  Google Scholar 

  • Sein M, Henfridsson O, Purao S, Rossi M, Lindgren R (2011) Action design research. MIS Q 35(1):37–56

    Article  Google Scholar 

  • Shepherd D, Suddaby R (2017) Theory building: a review and integration. J Manag 43(1):59–86

    Google Scholar 

  • Siegert B (2011) The map is the territory. Radic Philos 5:13–16

    Google Scholar 

  • Silic M, Lowry P (2020) Using design-science based Gamification to improve organizational security training and compliance. J Manag Inf Syst 37(1):129–161. https://doi.org/10.1080/07421222.2019.1705512

    Article  Google Scholar 

  • Simon H (1996) The sciences of the artificial (Third Edition). The MIT Press

    Google Scholar 

  • Sturm B, Sunyaev A (2019) Design principles for systematic search systems: a holistic synthesis of a rigorous multi-cycle design science research journey. Bus Inf Syst Eng 61(1):91–111

    Article  Google Scholar 

  • Suwa M, Tversky B (1997) What do architects and students perceive in their design sketches? A protocol analysis. Des Stud 18(4):385–403

    Article  Google Scholar 

  • Tversky B (2014) Visualizing thought. Handbook of human centric visualization. Springer, New York, pp 3–40

    Chapter  Google Scholar 

  • Umapathy K, Purao S, Barton R (2008) Designing enterprise integration solutions: effectively. Eur J Inf Syst 17(5):518–527. https://doi.org/10.1057/ejis.2008.39

    Article  Google Scholar 

  • VanderMeer D, Dutta K, Datta A (2012) A cost-based database request distribution technique for online e-commerce applications. MIS Q 36(2):479–507. https://doi.org/10.2307/41703464

    Article  Google Scholar 

  • Varghese P (2019) A Thought on models of design processes: abstraction, representation and reality. Research into design for a connected world. Springer, Singapore, pp 75–85

    Chapter  Google Scholar 

  • Velichety S, Ram S, Bockstedt J (2019) Quality assessment of peer-produced content in knowledge repositories using development and coordination activities. J Manag Inf Syst 36(2):478–512. https://doi.org/10.1080/07421222.2019.1598692

    Article  Google Scholar 

  • Venable J, Pries-Heje J, Baskerville R (2016) FEDS: a framework for evaluation in design science research. Eur J Inf Syst 25(1):77–89

    Article  Google Scholar 

  • Venkatesh V, Aloysius J, Hoehle H, Burton S (2017) Design and evaluation of auto-id enabled shopping assistance artifacts in customers’ mobile phones: two retail store laboratory experiments. MIS Q 41(1):83–114

    Article  Google Scholar 

  • Vom Brocke J, Winter R, Hevner A, Maedche A (2020) Accumulation and evolution of design knowledge in design science research: a journey through time and space. J Assoc Inf Syst. https://doi.org/10.17705/1jais.00611

    Article  Google Scholar 

  • Vom Brocke J, Gau M, Mädche A (2021) Journaling the design science research process: transparency about the making of design knowledge. In: International conference on design science research in information systems and technology, 131–136

  • Walls J, Widmeyer G, El Sawy O (1992) Building an information system design theory for vigilant EIS. Inf Syst Res 3(1):36–59

    Article  Google Scholar 

  • Wand Y, Weber R (1990) Toward a theory of the deep structure of information systems. In: International conference on information systems, 3

  • Wand Y, Weber R (2002) Research commentary: information systems and conceptual modeling: a research agenda. Inf Syst Res 13(4):363–376

    Article  Google Scholar 

  • Weigand H, Johannesson P, Andersson B (2021) An artifact ontology for design science research. Data Knowl Eng 133:101878

    Article  Google Scholar 

  • Williams K, Chatterjee S, Rossi M (2008) Design of emerging digital services: a taxonomy. Eur J Inf Syst 17(5):505–517. https://doi.org/10.1057/ejis.2008.38

    Article  Google Scholar 

  • Winter R (2008) Design science research in Europe. Eur J Inf Syst 17(5):470–475

    Article  Google Scholar 

  • Wyssusek B (2006) On ontological foundations of conceptual modelling. Scand J Inf Syst 18(1):9

    Google Scholar 

  • Xu J, Wang G, Li J, Chau M (2007) Complex problem solving: identity matching based on social contextual information. J Assoc Inf Syst 8(10):525–545

    Google Scholar 

  • Yang Y, Singhal S, Xu Y (2012) Alternate strategies for a win-win seeking agent in agent-human negotiations. J Manag Inf Syst 29(3):223–256. https://doi.org/10.2753/MIS0742-1222290307

    Article  Google Scholar 

  • Zachman J (1987) A framework for information systems architecture. IBM Syst J 26(3):276–292

    Article  Google Scholar 

Download references

Funding

This work was supported by the LASIGE Research Unit, ref. UIDB/00408/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Antunes.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: examples of visual tokens coded in relation to visual scheme

Schematization

Main features

Illustrative examples

Notational

Combination of text and recognizable visual tokens

View full size image

Discursive

Use of natural language in combination with few visual tokens

View full size image

Sketched

Use of non-notational visual tokens

View full size image

Concept tokens

Items

Singular visual tokens

View full size image

Groups

Collections of items

View full size image

Classes

Groups of visual tokens suggesting composition

View full size image

Relationship tokens

Implicit

Established by context

View full size image

Associations

Directed or non-directed links between concepts

View full size image

Influences

Directed, cause-effect links

View full size image

Mutual influences

Bi-directional links

View full size image

1.2 Appendix B: reviewed artifacts

See Tables 8 and 9.

Table 8 List of artifacts
Table 9 Assigned codes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, P., Thuan, N.H. & Johnstone, D. Nature and purpose of visual artifacts in design science research. Inf Syst E-Bus Manage 20, 515–550 (2022). https://doi.org/10.1007/s10257-022-00559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10257-022-00559-2

Keywords

Navigation