Skip to main content
Log in

Rose-Like 2D Layered Silicate Supported Fe3O4 Catalysts for Improved Selectivity Toward Olefins in CO Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrophilic 2D layered silicate supported Fe3O4 catalyst (Fe3O4/2D-LS) was prepared by an impregnation method and showed greatly improved olefin selectivity in CO hydrogenation. The olefin ratio (O/P) on Fe3O4/2D-LS was increased from 0.50 to 6.05 compared with that of single Fe3O4. Surprisingly, the Fe3O4/2D-LS catalysts had an enhanced chain growth ability and promoted the formation of linear α-olefin in C5+ hydrocarbons increasing from 33.5 to 72.5%. Characterizations showed that layered structure and hydrophilic properties maintained during a CO hydrogenation test. The Fe3O4 supported 2D-LS was easier to reduction and promoted the CO adsorption. The hydroxyl groups on the 2D-LS detected by CA and Zeta may help to increase the selectivity of olefin by inhibiting the secondary reaction of primary olefins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tan L, Zhang P, Cui Y, Suzuki Y, Li H, Guo L, Yang G, Tsubaki N (2019) Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation. Fuel Proces Technol 196:106174

    Article  CAS  Google Scholar 

  2. Yaisamleea R, Reubroycharoen P (2021) Light olefin production from the catalytic cracking of fusel oil in a fixed bed reactor. Biomass Bioenergy 153:106217

    Article  Google Scholar 

  3. Tan L, Wang F, Zhang P, Suzuki Y, Wu Y, Chen J, Yang G, Tsubaki N (2020) Design of a core–shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Chem Sci 11:4097–4105

    Article  CAS  Google Scholar 

  4. Lopez C, Corma A (2012) Supported Iron nanoparticles as catalysts for sustainable production of lower olefins. ChemCatChem 4:751–752

    Article  CAS  Google Scholar 

  5. Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem 2:1030–1058

    Article  CAS  Google Scholar 

  6. Tan L, Zhang P, Suzuki Y, Li H, Guo L, Yang G, Chen J, Peng X, Tsubaki N (2019) Bifunctional capsule catalyst of Al2O3@Cu with strengthened dehydration reaction field for direct synthesis of dimethyl ether from syngas. Ind Eng Chem Res 58:22905–22911

    Article  CAS  Google Scholar 

  7. Wang H, Huang S, Wang J, Zhao Q, Wang Y, Ma X (2019) Effect of Ca promoter on the structure and catalytic behavior of FeK/Al2O3 catalyst in Fischer-Tropsch synthesis. ChemCatChem 14:3220–3226

    Article  Google Scholar 

  8. Cheng K, Ordomsky V, Legras B, Virginie M, Paul S, Wang Y, Khodakov A (2015) Sodium promoted iron catalysts prepared on different supports for high temperature Fischer-Tropsch synthesis. Appl Catal A 502:204–214

    Article  CAS  Google Scholar 

  9. Gu B, He S, Zhou W, Kang J, Cheng K, Zhang Q, Wang Y (2017) Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas. J Energy Chem 26:608–615

    Article  Google Scholar 

  10. Liu B, Geng S, Zheng J, Jia X, Jiang F, Liu X (2018) Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins. ChemCatChem 10:4718–4732

    Article  CAS  Google Scholar 

  11. Cheng Y, Lin J, Wu T, Wang H, Xie S, Pei Y, Yan S, Qiao M, Zong B (2017) Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity. Appl Catal B 204:475–485

    Article  CAS  Google Scholar 

  12. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Microporous Mesoporous Mater 107:3–15

    Article  CAS  Google Scholar 

  13. Xu Y, Li X, Gao J, Wang J, Ma G, Wen X, Yang Y, Li Y, Ding M (2021) A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 371:610–613

    Article  CAS  Google Scholar 

  14. Rytter E, Holmen A (2017) Perspectives on the effect of water in cobalt Fischer-Tropsch synthesis. ACS Catal 7:5321–5328

    Article  CAS  Google Scholar 

  15. Xie S, Liu Y, Wu ZY, Shen G, Yu R (2015) Application of inorganic layered materials in electrochemical Sensors. Chin J Anal Chem 43:1648–1655

    Article  CAS  Google Scholar 

  16. Tian H, Li X, Zeng L, Gong J (2015) Recent advances on the design of group VIII base-metal catalysts with encapsulated structures. ACS Catal 5:4959–4977

    Article  CAS  Google Scholar 

  17. Yu X, Zhang J, Wang X, Ma Q, Gao X, Xia H, Lai X, Fan S, Zhao T (2018) Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. Appl Catal B 232:420–428

    Article  CAS  Google Scholar 

  18. Zhang Y, Guo X, Liu B, Zhang J, Gao X, Ma Q, Fan S, Zhao T (2021) Cellulose modified iron catalysts for enhanced light olefins and linear C5+ Hydrogenation of CO with α-olefins. Fuel 294:120504

    Article  CAS  Google Scholar 

  19. Yan B, Ma L, Gao X, Zhang J, Ma Q, Zhao T (2019) Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer-Tropsch synthesis. Appl Catal A 585:117184

    Article  CAS  Google Scholar 

  20. Kayan A (2019) Inorganic-organic hybrid materials and their adsorbent properties. Adv Compos Hybrid Mater 2:34–45

    Article  CAS  Google Scholar 

  21. Wang J, Du C, Wei Q, Shen W (2021) Two-dimensional Pd nanosheets with enhanced catalytic activity for selective hydrogenation of nitrobenzene to aniline. Energy Fuels 35:4358–4366

    Article  CAS  Google Scholar 

  22. Ge M, Xi Z, Zhu C, Liang G, Hu G, Jamal L, Alam J (2019) Preparation and characterization of magadiite-magnetite nanocomposite by sorption of methylene blue from aqueous solutions. Polymers 11:607

    Article  Google Scholar 

  23. Moura H, Gibbons N, Miller S, Pastore H (2018) 2D-aluminum-modified solids as simultaneous support and cocatalyst for in situ polymerizations of olefins. J Catal 362:129–145

    Article  CAS  Google Scholar 

  24. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879

    Article  CAS  Google Scholar 

  25. Liu Y, Chen J, Bao J, Zhang Y (2015) Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal 5:3905–3909

    Article  CAS  Google Scholar 

  26. Steudel A, Batenburg L, Fischer H, Weidler P, Emmerich K (2009) Alteration of non-swelling clay minerals and magadiite by acid activation. Appl Clay Sci 44:95–104

    Article  CAS  Google Scholar 

  27. Jia X, Wu J, Lu K, Li Y, Qiao X, Kaelin J, Lu S, Cheng Y, Wu X, Qin W (2019) Organic-inorganic hybrids of Fe-Co polyphenolic network wrapped Fe3O4 nanocatalysts for significantly enhanced oxygen evolution. J Mater Chem A 7:14302–14308

    Article  CAS  Google Scholar 

  28. Liu Y, Chen J, Zhang Y (2015) The effect of pore size or iron particle size on the formation of light olefins in Fischer-Tropsch synthesis. RSC Adv 5:29002–29007

    Article  CAS  Google Scholar 

  29. Ma J, Sun N, Wang C, Xue J, Qiang L (2018) Facile synthesis of novel Fe3O4@SiO2@ mSiO2@TiO2 core-shell microspheres with mesoporous structure and their photocatalytic performance. J Alloys Compd 743:456–463

    Article  CAS  Google Scholar 

  30. Wu X, Qian W, Ma H, Zhang H, Liu D, Sun Q, Ying W (2019) Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer-Tropsch synthesis of light olefins. Fuel 257:116101

    Article  CAS  Google Scholar 

  31. Rytter E, Borg Ø, Tsakoumis NE, Holmen A (2018) Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: γ-alumina based structure-performance relationships. J Catal 365:334–343

    Article  CAS  Google Scholar 

  32. Ganesh VA, Dinachali SS, Raut HK, Walsh TM, Nair AS, Ramakrishna S (2013) Electrospun SiO2 nanofibers as a template to fabricate a robust and transparent superamphiphobic coating. RSC Adv 3:3819

    Article  CAS  Google Scholar 

  33. Ni L, Wang R, Wang H, Jing W, Zhu L, Qiu S, Zhang Z (2019) Surface-induced synthesis of hybrid N, P functionalized hierarchically porous carbon nanosheets for lithium-ion batteries. Microporous Mesoporous Mater 282:197–204

    Article  CAS  Google Scholar 

  34. Cai Y, Yuan F, Wang X, Sun Z, Chen Y, Liu Z, Wang X, Yang S, Wang S (2017) Synthesis of core-shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(III). Cellulose 24:175–190

    Article  CAS  Google Scholar 

  35. Pena D, Cognigni A, Neumayer T, Beek W, Jones D, Quijada M, Rønning M (2018) Identification of carbon species on iron-based catalysts during Fischer-Tropsch synthesis. Appl Catal A 554:10–23

    Article  CAS  Google Scholar 

  36. Wang X, Wan R, Gu H, Fu G, Tang H, Hu G (2020) Well-water-dispersed N-trimethyl chitosan/Fe3O4 hybrid nanoparticles as peroxidase mimetics for quick and effective elimination of bacteria. J Biomater Sci-Polym Ed 31:969–983

    Article  Google Scholar 

  37. Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121:7573–7583

    Article  Google Scholar 

  38. Tu J, Yuan J, Kang S, Xu Y, Wang T (2018) One-pot synthesis of carbon-coated Fe3O4 nanoparticles with tunable size for production of gasoline fuels. New J Chem 42:10861–10867

    Article  CAS  Google Scholar 

  39. Torres Galvis HM, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Iron particle size effects for direct production of lower olefins from synthesis gas. J Am Chem Soc 134:16207–16215

    Article  CAS  Google Scholar 

  40. Ma G, Xu Y, Wang J, Bai J, Du Y, Zhang J, Ding M (2020) An na-modified Fe@C core-shell catalyst for enhanced production of gasoline-range hydrocarbons via Fischer-Tropsch synthesis. RSC Adv 10:10723–10730

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos .21968025, 21965029), the Graduate Innovation Program of Ningxia University (GIP2020051, GIP2021013), the Fourth Batch of Ningxia Youth Talents Supporting Program (TJGC2019022) and West Light Foundation of the Chinese Academy of Sciences (XAB2019AW02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhua Gao or Jianli Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Gao, X., Xue, S. et al. Rose-Like 2D Layered Silicate Supported Fe3O4 Catalysts for Improved Selectivity Toward Olefins in CO Hydrogenation. Catal Lett 152, 2823–2831 (2022). https://doi.org/10.1007/s10562-021-03861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03861-9

Keywords

Navigation