Skip to main content
Log in

Thickness of epithelia on wavy substrates: measurements and continuous models

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We measured the thickness of MDCK epithelia grown on substrates with a sinusoidal profile. We show that while at long wavelength the profile of the epithelium follows that of the substrate, at short wavelengths cells are thicker in valleys than on ridges. This is reminiscent of the so-called «healing length in the case of a thin liquid film wetting a rough solid substrate. We explore the ability of continuum mechanics models to account for these observations. Modeling the epithelium as a thin liquid film, with surface tension, does not fully account for the measurements. Neither does modeling the epithelium as a thin incompressible elastic film. On the contrary, the addition of an apical active stress gives satisfactory agreement with measurements, with one fitting parameter, the ratio between the active stress and the elastic modulus.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Salomon, C. Gaston, J. Magescas, B. Duvauchelle, D. Canioni, L. Sengmanivong, A. Mayeux, G. Michaux, F. Campeotto, J. Lemale, J. Viala, F. Poirier, N. Minc, J. Schmitz, N. Brousse, B. Ladoux, O. Goulet, D. Delacour, Nat. Commun. 8, 13998 (2017). https://doi.org/10.1038/ncomms13998

    Article  ADS  Google Scholar 

  2. F.A. Maechler, C. Allier, A. Roux, C. Tomba, J. Cell Sci. 132, 22237jcs2 (2018). https://doi.org/10.1242/jcs.222372

    Article  Google Scholar 

  3. J. Fouchard, T.P.J. Wyatt, A. Proag, A. Lisica, N. Khalilgharibi, P. Recho, M. Suzanne, A. Kabla, G. Charras, Proc. Natl. Acad. Sci. 117, 9377 (2020). https://doi.org/10.1073/pnas.1917838117

    Article  ADS  Google Scholar 

  4. M. Luciano, S.L. Xue, W.H. De Vos, L. Redondo-Morata, M. Surin, F. Lafont, E. Hannezo, S. Gabriele, Nat. Phys. 17(12), 1382 (2021). https://doi.org/10.1038/s41567-021-01374-1

    Article  Google Scholar 

  5. N. Harmand, A. Huang, S. Hénon, Phys. Rev. X 11(3), 031028 (2021). https://doi.org/10.1103/PhysRevX.11.031028

    Article  Google Scholar 

  6. F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Nat. Phys. 7(1), 56 (2011). https://doi.org/10.1038/nphys1806

    Article  Google Scholar 

  7. C.L. Adams, Y.T. Chen, S.J. Smith, W.J. Nelson, J. Cell Biol. 142(4), 1105 (1998)

    Article  Google Scholar 

  8. D.A. Herzlinger, T.G. Easton, G.K. Ojakian, J. Cell Biol. 93(2), 269 (1982). https://doi.org/10.1083/jcb.93.2.269

    Article  Google Scholar 

  9. D. Sage, D. Prodanov, J.Y. Tinevez, J. Schindelin, p. 1 (2012)

  10. P. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003)

    MATH  Google Scholar 

  11. D. Andelman, J. Joanny, M. Robbins, Europhys. Lett. 7(8), 731 (1988). https://doi.org/10.1209/0295-5075/7/8/011

    Article  ADS  Google Scholar 

  12. H. Honda, M. Tanemura, T. Nagai, J. Theor. Biol. 226(4), 439 (2004). https://doi.org/10.1016/j.jtbi.2003.10.001

    Article  ADS  Google Scholar 

  13. E. Hannezo, J. Prost, J.F. Joanny, Proc. Natl. Acad. Sci. 111(1), 27 (2014). https://doi.org/10.1073/pnas.1312076111

    Article  ADS  Google Scholar 

  14. M. Misra, B. Audoly, I.G. Kevrekidis, S.Y. Shvartsman, Biophys. J . 110(7), 1670 (2016). https://doi.org/10.1016/j.bpj.2016.03.009

    Article  Google Scholar 

  15. G. Salbreux, G. Charras, E. Paluch, Trends Cell Biol. 22(10), 536 (2012). https://doi.org/10.1016/J.TCB.2012.07.001

    Article  Google Scholar 

  16. P. Chugh, E.K. Paluch, J. Cell Sci. 131(14), jcs186254 (2018). https://doi.org/10.1242/jcs.186254

    Article  Google Scholar 

  17. J.Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.F. Joanny, E. Paluch, Proc. Natl. Acad. Sci. 106(44), 18581 (2009). https://doi.org/10.1073/pnas.0903353106

    Article  ADS  Google Scholar 

  18. A. Pietuch, A. Janshoff, Open Biol. 3(7), 130084 (2013). https://doi.org/10.1098/rsob.130084

    Article  Google Scholar 

  19. A.X. Cartagena-Rivera, C.M. Van Itallie, J.M. Anderson, R.S. Chadwick, Nat. Commun. 8(1), 1030 (2017). https://doi.org/10.1038/s41467-017-01145-8

    Article  ADS  Google Scholar 

  20. M. Balland, N. Desprat, D. Icard, S. Féréol, A. Asnacios, J. Browaeys, S. Hénon, F. Gallet, Phys. Rev. E 74(2), 021911 (2006). https://doi.org/10.1103/PhysRevE.74.021911

    Article  ADS  Google Scholar 

  21. S. Nehls, H. Nöding, S. Karsch, F. Ries, A. Janshoff, Biophys. J. 116(11), 2204 (2019). https://doi.org/10.1016/j.bpj.2019.04.028

    Article  ADS  Google Scholar 

  22. T. Lecuit, A.S. Yap, Nat. Cell Biol. 17(5), 533 (2015)

    Article  Google Scholar 

  23. S. Okuda, Y. Inoue, M. Eiraku, Y. Sasai, T. Adachi, J. Biomech. 46(10), 1705 (2013). https://doi.org/10.1016/j.jbiomech.2013.03.035

    Article  Google Scholar 

  24. L. Balasubramaniam, A. Doostmohammadi, T.B. Saw, G.H.N.S. Narayana, R. Mueller, T. Dang, M. Thomas, S. Gupta, S. Sonam, A.S. Yap, Y. Toyama, R.M. Mege, J.M. Yeomans, B. Ladoux, Nat. Mater. 20(8), 1156 (2021). https://doi.org/10.1038/s41563-021-00919-2

    Article  ADS  Google Scholar 

  25. K. Bambardekar, R. Clément, O. Blanc, C. Chardès, P.F. Lenne, Proc. Natl. Acad. Sci. USA 112(5), 1416 (2015). https://doi.org/10.1073/pnas.1418732112

    Article  ADS  Google Scholar 

  26. J. Solon, A. Kaya-Çopur, J. Colombelli, D. Brunner, Cell 137(7), 1331 (2009). https://doi.org/10.1016/j.cell.2009.03.050

    Article  Google Scholar 

  27. T.B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S. Thampi, Y. Toyama, P. Marcq, C.T. Lim, J.M. Yeomans, B. Ladoux, Nature 544(7649), 212 (2017). https://doi.org/10.1038/nature21718

    Article  ADS  Google Scholar 

  28. C. Blanch-Mercader, V. Yashunsky, S. Garcia, G. Duclos, L. Giomi, P. Silberzan, Phys. Rev. Lett. 120(20), 208101 (2018). https://doi.org/10.1103/PhysRevLett.120.208101

    Article  ADS  Google Scholar 

  29. T. Baronsky, A. Dzementsei, M. Oelkers, J. Melchert, T. Pieler, A. Janshoff, Integr. Biol. 8(3), 349 (2016). https://doi.org/10.1039/c5ib00291e

  30. F.N. Arslan, J. Eckert, T. Schmidt, C.P. Heisenberg, Biophys. J . 120(19), 4182 (2021). https://doi.org/10.1016/j.bpj.2021.03.025

  31. E. Hannezo, A. Coucke, J.F. Joanny, Phys. Rev. E 93(2), 022405 (2016). https://doi.org/10.1103/PhysRevE.93.022405

    Article  ADS  Google Scholar 

  32. J.F. Rupprecht, K.H. Ong, J. Yin, A. Huang, H.H.Q. Dinh, A.P. Singh, S. Zhang, W. Yu, T.E. Saunders, Mol. Biol. Cell 28(25), 3582 (2017). https://doi.org/10.1091/mbc.e17-01-0060

    Article  Google Scholar 

  33. J. Rozman, M. Krajnc, P. Ziherl, Nat. Commun. 11(1), 3805 (2020). https://doi.org/10.1038/s41467-020-17535-4

    Article  ADS  Google Scholar 

  34. N. Murisic, V. Hakim, I.G. Kevrekidis, S.Y. Shvartsman, B. Audoly, Biophys. J . 109(1), 154 (2015). https://doi.org/10.1016/j.bpj.2015.05.019

    Article  Google Scholar 

  35. S. Tlili, C. Gay, F. Graner, P. Marcq, F. Molino, P. Saramito, Eur. Phys. J. E 38(5), 33 (2015). https://doi.org/10.1140/epje/i2015-15033-4

    Article  Google Scholar 

  36. J. Dervaux, L. Limat, Proc. R. Soc. A: Math. Phys. Eng. Sci. 471(2176), 20140813 (2015). https://doi.org/10.1098/rspa.2014.0813

    Article  ADS  Google Scholar 

  37. J. Dervaux, M. Roché, L. Limat, Soft Matter 16, 5157 (2020). https://doi.org/10.1039/D0SM00395F

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the ImagoSeine core facility of the Institut Jacques Monod (member of the France BioImaging, ANR-10-INBS-04) and the LabEx “Who Am I?” ANR-11-LABX-007 (Transition post-doctoral program). This work was funded in part by the French Agence Nationale de la Recherche Grant “AdhesiPS” ANR-17-CE08-0008.

Author information

Authors and Affiliations

Authors

Contributions

NH performed all the experiments, image processing, data analysis, and calculations of Sect. 3.1. JD performed all the calculations and analysis of Sects. 3.2 and 3.3. CP designed and built the set-up for the production of corrugated substrates. SH designed and supervised the work and wrote the paper.

Corresponding author

Correspondence to Sylvie Hénon.

Appendix

Appendix

1.1 A. Healing length of thin liquid films

Following [10, 11], we describe the properties of a thin film wetting a solid surface by its energy per surface area, which contains three terms, the liquid free surface tension \(\gamma _{cm}\), the liquid–solid interfacial tension \(\gamma _{cs}\) and a term that depends on the thickness H of the film, P(H). We assume that when the surface of the solid is perfectly flat, defined by the plane \(Z=0\), the film has an optimal thickness \(H_0\). When the solid surface is rough, with a roughness \(h_0(X,Y)\), the position \(\zeta (X,Y)\) of the liquid free surface is governed by the minimization of the energy:

$$\begin{aligned} \int \int {dX dY \left[ P(\zeta -h_0)+\frac{1}{2} \gamma _{cm}({\mathbf {\nabla }}\zeta )^2\right] } \end{aligned}$$
(27)

We make the assumption that the curvature of the free surface remains small. For small deformations, P is expanded up to second order around \(\zeta -h_0=H_0\). The integral of the zero-order term is a constant, that of the first-order term is equal to zero assuming that the total volume of liquid is constant. Finally the minimization of the energy yields:

$$\begin{aligned} \frac{1}{\xi _e^2}(\zeta -h_0-H_0)-{\mathbf {\nabla }}^2 \zeta = 0 \end{aligned}$$
(28)

where the healing length \(\xi _e\) is defined by Eq. 1.

When the substrate shows a sinusoidal profile with wavelength \(\lambda \) and amplitude A (as defined by Eq. 9), Eq. 28 yields to \(\zeta \) also varying sinusoidally, with amplitude a displayed in Eq. 2. Since \(a<A\), the thickness of the liquid film is maximum in the valleys, where \(\cos (2\pi X/\lambda )=-1\), and minimum on the ridges, where \(\cos (2\pi X/\lambda )=+1\), and the difference in the thickness of the film between the valleys and the ridges is equal to:

$$\begin{aligned} A-a=\frac{A}{1+\left( \frac{\lambda }{2 \pi \xi _e} \right) ^2} \end{aligned}$$
(29)

1.2 B. Resolution of the elastic model

Following [36, 37], we solve the most general linear elastic model described in the main text (Eqs. 1014 together with 16 and 23) by writing the balance of linear momentum, incompressibility condition and boundary conditions in Fourier space. Introducing the Fourier transform \({\hat{f}}(k,Z)\) of a function f(XZ) as:

$$\begin{aligned} {\hat{f}}(k,Z)=\frac{1}{\sqrt{2 \pi }} \int ^{\infty }_{\infty } f(X,Z)e^{ikX}\text{ d }k \end{aligned}$$
(30)

Using this definition the unknown fields u and p can be expressed in term of the vertical component of the displacement field. The incompressibility condition first yields:

$$\begin{aligned} {\hat{u}}(k,Z)=\frac{i}{k} \frac{\partial {\hat{v}}}{\partial Z} \end{aligned}$$
(31)

while the X-component of the equilibrium equation implies:

$$\begin{aligned} {\hat{p}}(k,Z)=\mu \left( \frac{1}{k^2} \frac{\partial ^3 {\hat{v}}}{\partial Z^3} - \frac{\partial {\hat{v}}}{\partial Z}\right) \end{aligned}$$
(32)

where \({\hat{u}}\), \({\hat{v}}\) and \({\hat{p}}\) are respectively the Fourier transforms of u, v and p. Using these results, the Y-component of the balance of linear momentum yields a fourth-order ordinary differential equation of \({\hat{v}}\):

$$\begin{aligned} \frac{\partial ^4 {\hat{v}}}{\partial Z^4} - 2k^2 \frac{\partial ^2 {\hat{v}}}{\partial Z^2} + k^4{\hat{v}} = 0 \end{aligned}$$
(33)

This equation is supplemented by four boundary conditions. At \(Z=0\) we have:

$$\begin{aligned}&\frac{\partial {\hat{v}}}{\partial Z}=0 \end{aligned}$$
(34)
$$\begin{aligned}&{\hat{v}}(k,0)=\frac{A\sqrt{\pi }}{2\sqrt{2}}\left\{ \delta \left( k-\frac{2\pi }{\lambda }\right) +\delta \left( k+\frac{2\pi }{\lambda }\right) \right\} \end{aligned}$$
(35)

while at the free surface \(Z=H\) we have:

$$\begin{aligned}&\mu \frac{\partial ^2 {\hat{v}}}{\partial Z^2}+k^2\left( \mu + \sigma _{act} \right) {\hat{v}}=0 \end{aligned}$$
(36)
$$\begin{aligned}&3 k^2 \mu \frac{\partial {\hat{v}}}{\partial Z}- \mu \frac{\partial ^3 {\hat{v}}}{\partial Z^3}=-\gamma k^4 {\hat{v}} \end{aligned}$$
(37)

Solving the ordinary differential equation for \({\hat{v}}\) together with the above four boundary conditions, we obtain the following solution, here expressed at the free surface for simplicity:

$$\begin{aligned}&{\hat{v}}(k,H)=\frac{A\sqrt{\pi }}{2\sqrt{2}}\left\{ \delta \left( k-\frac{2\pi }{\lambda }\right) +\delta \left( k+\frac{2\pi }{\lambda }\right) \right\} \\&\quad \frac{2(\cosh (Hk)+Hk\sinh (Hk))}{(1+2H^2k^2(1-\frac{\gamma }{\mu H}-\frac{\sigma _{act}}{\mu })+\cosh (2Hk)+\frac{\gamma }{2\mu }\sinh (2Hk)} \end{aligned}$$

where \(\delta \) is the Dirac delta distribution. We can now use Fourrier inversion theorem to find the Z-component of the displacement field in real space (again expressed at the free surface for simplicity):

$$\begin{aligned}&v(X,H)=\frac{A}{2}\cos \left( \frac{2\pi X}{\lambda }\right) \\&\quad \frac{2(\cosh (Hk)+Hk\sinh (Hk))}{(1+2H^2k^2\left( 1-\frac{\gamma }{\mu H}-\frac{\sigma _{act}}{\mu }\right) +\cosh (2Hk)+\frac{\gamma }{2\mu }\sinh (2Hk)} \end{aligned}$$

Note that this last result can be rewritten under the form presented in Eqs. 2425 or, taking \(\sigma _{\mathrm{act}}=0\), as 1718.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmand, N., Dervaux, J., Poulard, C. et al. Thickness of epithelia on wavy substrates: measurements and continuous models. Eur. Phys. J. E 45, 53 (2022). https://doi.org/10.1140/epje/s10189-022-00206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00206-1

Navigation