Skip to main content
Log in

Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The goal of this article is to study the box dimension of the mixed Katugampola fractional integral of two-dimensional continuous functions on \([0,1]\times [0,1]\). We prove that the box dimension of the mixed Katugampola fractional integral having fractional order \((\alpha =(\alpha _1,\alpha _2);~ \alpha _1>0, \alpha _2>0)\) of two-dimensional continuous functions on \([0,1]\times [0,1]\) is still two. Moreover, the results are also established for the mixed Hadamard fractional integral. Our new results are to improve the existing studies. We pose also some open problems for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  2. Clarkson, J.A., Adams, C.R.: On definitions of bounded variation for functions of two variables. Trans. Am. Math. Soc. 35(4), 824–854 (1933)

    Article  MathSciNet  Google Scholar 

  3. Chandra S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(03), Art. 2150066 (2021)

  4. Erdélyi, A., Kober, H.: Some remarks on Hankel transforms. Q. J. Math. Oxford Ser. 11, 212–221 (1940)

    Article  MathSciNet  Google Scholar 

  5. Herrmann, R.: Towards a geometric interpretation of generalized fractional integrals: Erdélyi-Kober type integrals on \(R^n\), as an example. Fract. Calc. Appl. Anal. 17(2), 361–370 (2014). https://doi.org/10.2478/s13540-014-0174-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218(03), 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Katugampola, U.N.: New fractional integral unifying six existing fractional integrals. ArXiv:1612.08596v1 (2016)

  8. Kim, T.S., Kim, S.: Relations between dimensions and differentiability of curves. Fract. Calc. Appl. Anal. 4(2), 135–142 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Math. Studies 204, Elsevier Science B.V., Amsterdam (2006)

  10. Kiryakova, V.: Generalized Fractional Calculus and Applications. Wiley, New York (1994)

    MATH  Google Scholar 

  11. Kiryakova, V. (Convenor of Round Table Discussion): A long standing conjecture failed? In: Transform Methods & Special Functions’, Varna ’96 (Proc. 2nd Internat. Workshop), pp. 584–593, Inst. Math. Inform. – Bulg. Acad. Sci., Sofia (1998)

  12. Liang, Y.S.: Box dimensions of Riemann–Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Anal. 72(11), 4304–4306 (2010)

    Article  MathSciNet  Google Scholar 

  13. Liang, Y. S., Su, W. Y.: Fractal dimensions of fractional integral of continuous functions. Acta. Math. Sin.-English Ser. 32(12), 1494–1508 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liang, Y.S.: Fractal dimension of Riemann–Liouville fractional integral of \(1\)-dimensional continuous functions. Fract. Calc. Appl. Anal. 21(6), 1651–1658 (2019). https://doi.org/10.1515/fca-2018-0087

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, Y.S., Liu, N.: Fractal dimensions of Weyl–Marchaud fractional derivative of certain one-dimensional functions. Fractals 27(07), Art. 1950114 (2019)

  16. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  17. Sneddon, I.N.: The use in mathematical analysis of Erdélyi-Kober operators and of some of their applications. In: Fractional Calculus and Its Applications. Lecture Notes in Math., pp. 37–79. Springer, New York (1975)

  18. Tatom, F.B.: The relationship between fractional calculus and fractal. Fractals 3(1), 217–229 (1995)

    Article  MathSciNet  Google Scholar 

  19. Verma, S., Viswanathan, P.: Bivariate functions of bounded variation: fractal dimension and fractional integral. Indag. Math. 31(2), 294–309 (2020)

    Article  MathSciNet  Google Scholar 

  20. Verma, S., Viswanathan, P.: Katugampola fractional integral and fractal dimension of bivariate functions. Results Math. 76(04), 1–23 (2021)

    Article  MathSciNet  Google Scholar 

  21. Wu, J.R.: On a linearity between fractal dimension and order of fractional calculus in Hölder space. Appl. Math. Comput. 385, Art. 125433 (2020)

  22. Yao, J., Chen, Y., Li, J., Wang, B.: Some remarks on fractional integral of one-dimensional continuous functions. Fractals 28(01), Art. 2050005 (2020)

Download references

Acknowledgements

We are thankful to the handling editor and anonymous reviewers for their constructive comments and suggestions, which helped us to improve the manuscript. The first author thanks to CSIR, India for the financial support (Grant No: 09/1058(0012) /2018-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abbas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Abbas, S. Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions. Fract Calc Appl Anal 25, 1022–1036 (2022). https://doi.org/10.1007/s13540-022-00050-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00050-2

Keywords

Mathematics Subject Classification

Navigation