Skip to main content
Log in

Global solutions of nonlinear fractional diffusion equations with time-singular sources and perturbed orders

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In a Hilbert space, we consider a class of nonlinear fractional equations having the Caputo fractional derivative of the time variable t and the space fractional function of the self-adjoint positive unbounded operator. We consider various cases of global Lipschitz and local Lipschitz source with time-singular coefficient. These sources are generalized of the well–known fractional equations such as the fractional Cahn–Allen equation, the fractional Burger equation, the fractional Cahn–Hilliard equation, the fractional Kuramoto–Sivashinsky equation, etc. Under suitable assumptions, we investigate the existence, uniqueness of maximal solution, and stability of solution of the problems with respect to perturbed fractional orders. We also establish some global existence and prove that the global solution can be approximated by known asymptotic functions as \(t\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldoghaither, A., Liu, D., Laleg-Kirati, T.: Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation. SIAM J. Sci. Comput. 37(6), A2813–A2839 (2015)

    Article  MathSciNet  Google Scholar 

  2. Andrade, B., Au, V. V., O’Regan, D., Tuan, N. H.: Well-posedness results for a class of semilinear time-fractional diffusion equations. Z. Angew. Math. Phys. 71(5), Paper No. 161, 24 pp. (2020)

  3. Asogwa, A. Foodun, M., Mijena, J., Nane, E.: Critical parameters for reaction-diffusion equations involving space-time fractional derivatives. Nonlinear Differ. Equ. Appl. 27(3) Paper No. 30, 22 pp. (2020)

  4. Cao, J., Song, G., Wang, J., Shi, Q., Sun, S.: Blow-up and global solutions for a class of time fractional nonlinear reaction diffusion equation with weakly spatial source. Appl. Math. Lett. 91, 201–206 (2019)

    Article  MathSciNet  Google Scholar 

  5. Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations, vol. 13. Oxford University Press, on Demand (1998)

  6. Clement, P., Londen, S.-O., Simonett, G.: Quasilinear evolutionary equations and continuous interpolation spaces. newblock J. Differential Equations 196, 418–447 (2004)

    Article  MathSciNet  Google Scholar 

  7. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimension fractional diffusion equation. Inverse Problems 25(11), Art. 115002 (2009)

  8. Dang, D.T., Nane, E., Nguyen, D.M., Tuan, N.H.: Continuity of solutions of a class of fractional equations. Potential Anal. 49(3), 423–478 (2018)

    Article  MathSciNet  Google Scholar 

  9. Dien, N.M., Trong, D.D.: Stability of solutions of a class of nonlinear fractional Laplacian parabolic problems. Math. Meth. Appl. Sci. 42(8), 2513–2532 (2019)

    Article  Google Scholar 

  10. Duan, J. S.: Time-and space–fractional partial differential equations. J. Math. Phys. 46, Art. 013504 (2005)

  11. Fabry, C.: Nagumo conditions for systems of second-order differential equations. J. Math. Anal. Appl. 107, 132–143 (1985)

    Article  MathSciNet  Google Scholar 

  12. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Article  MathSciNet  Google Scholar 

  13. Gorenflo, R.: Abel Integral Equations. Springer-Verlag, Berlin-Heidelberg (1991)

    Book  Google Scholar 

  14. Gorenflo, R., Kilbas, A. A., Mainardi, F., Rogosin, S. V.: Mittag-Leffler Function, Related Topics, and Applications. Springer-Verlag, Berlin-Heidelberg (2014), 2nd Ed. (2020)

  15. Kateregga, M., Mataramvura, S., Taylor, D.: Parameter estimation for stable distributions with application to commodity futures log-returns. Cogent Economics & Finance 5, Art. 131 (2017)

  16. Li, G., Zhang, D., Jia, X., Yamamoto, M.: Simultaneous inversion for the space–dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Problems 29(6), Art. 065 (2013)

  17. Schdmügen, K.:, Unbounded Self-adjoint Operators on Hilbert Space. Springer Science+Business Media, Dordrecht (2012)

  18. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  19. Trong, D.D., Dien, N.M., Viet, T.Q.: Global solution of space-fractional diffusion equations with nonlinear reaction source terms. Appl. Anal. 355, 1–31 (2019)

    Google Scholar 

  20. Thach, T.N., Tuan, N.H.: Stochastic pseudo-parabolic equations with fractional derivative and fractional Brownian motion. Stoch. Anal. Appl. (2021). https://doi.org/10.1080/07362994.2021.1906274

  21. Tuan, N.H., Au, V.V., Xu, R.: Semilinear Caputo time-fractional pseudo-parabolic equations. Commun. Pure Appl. Anal. 20(2), 583–621 (2021)

    Article  MathSciNet  Google Scholar 

  22. Viet, T.Q., Dien, N.M., Trong, D.D.: Stability of solutions of a class of nonlinear fractional Laplacian parabolic problems. J. Comput. Appl. Math. 355, 51–76 (2019)

    Article  MathSciNet  Google Scholar 

  23. Wang, W., Cheng, S., Guo, Z., Yan, X.: A note on the continuity for Caputo fractional stochastic differential equations. Chaos 30, Art. 073106 (2020)

  24. Cheng, X., Li, Z., Yamamoto, M.: Asymptotic behavior of solutions to space-time fractional diffusion- reaction equations. Math. Methods Appl. Sci. 40, 1019–1031 (2017)

    Article  MathSciNet  Google Scholar 

  25. Yakubov, S., Yakubov, Y.: Differential-Operator Equation. Ordinary and Partial Differential Equations. Chapman and Hall/CRC, Boca Raton, FL (2000)

    MATH  Google Scholar 

  26. Zhang, Q., Li, Y.: Global well-posedness and blow-up solution of the Cauchy problem for a time-fractional superdiffusion equation. J. Evol. Equ. 19, 271–303 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Q.-G., Sun, H.-R.: The Blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 46, 69–92 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank an anonymous referee and the editor for helpful comments that improved the quality and presentation of the paper. The research was supported by Vietnam National University of Hochiminh City [Grant No. B2021-18-02]. The research of Erkan Nane was partially supported by the Simons Foundation Collaboration Grants for Mathematicians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Nane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dien, N.M., Nane, E., Minh, N.D. et al. Global solutions of nonlinear fractional diffusion equations with time-singular sources and perturbed orders. Fract Calc Appl Anal 25, 1166–1198 (2022). https://doi.org/10.1007/s13540-022-00056-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00056-w

Keywords

Mathematics Subject Classification

Navigation