Skip to main content
Log in

Role of radiative and convective heat transfer during heating of an ingot product in a tubular furnace: experiment and simulation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Convective heat transfer and radiative heat transfer are two essential heat transfer modes in the heating process of steel; it is important to understand the role of them during the heating process clearly. The effects of the convective and radiative heat transfer during the heating process of a cast ingot in a tubular furnace have been studied by the designed natural and forced convection experiments and mathematical simulations. The heating time for the center of the ingot to reach the furnace temperature is decreased with the increase in furnace temperature. According to the experimental and simulation results, a model is proposed regarding the role of radiative and convective heat transfer in the heating process. At low temperature, the convective heat transfer plays a dominant role, while at high temperature, the influence of radiative heat transfer is larger. And a critical temperature exists between them. The forced convective heat transfer can enhance the influence of the convective heat transfer. The critical temperature can be shifted to higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Wikstrom, W. Blasiak, F. Berntsson, Appl. Therm. Eng. 27 (2007) 2463–2472.

    Article  Google Scholar 

  2. N.B. Arkhazloo, Y. Bouissa, F. Bazdidi-Tehrani, M. Jadidi, J.B. Morin, M. Jahazi, Case Studies in Thermal Engineering 14 (2019) 100428.

    Article  Google Scholar 

  3. P. Raj, G.S. Gupta, Measurement 151 (2020) 107131.

    Article  Google Scholar 

  4. Q. Gao, Y.H. Pang, Q. Sun, D. Liu, Z. Zhang, Int. J. Therm. Sci. 161 (2021) 106757.

    Article  Google Scholar 

  5. C.S. Wang, Y. Zhou, Z.J. Liang, F.X. Yang, Case Studies in Thermal Engineering 13 (2019) 100414.

    Article  Google Scholar 

  6. A.H. Meysami, R. Ghasemzadeh, S.H. Seyedein, M.R. Aboutalebi, J. Iron Steel Res. Int. 18 (2011) No. 10, 34–41.

    Article  Google Scholar 

  7. X.H. Fan, J. Li, X.L. Chen, Y. Wang, M. Gan, J. Iron Steel Res. Int. 20 (2013) No. 4, 16–19.

    Article  Google Scholar 

  8. Y. Cui, S.H. Li, T. Ying, H. Bao, X.Q. Zeng, Acta Metall. Sin. 57 (2021) 375–384.

    Google Scholar 

  9. H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Appl. Therm. Eng. 100 (2016) 925–931.

    Article  Google Scholar 

  10. M. Parmananda, S. Khan, A. Dalal, G. Natarajan, Int. J. Heat Mass Transfer 108 (2017) 627–644.

    Article  Google Scholar 

  11. M. Dehbani, M. Rahimi, Z. Rahimi, Appl. Therm. Eng. 208 (2022) 118273.

    Article  Google Scholar 

  12. X. Yang, Z.H. He, Q.L. Niu, S.H. Dong, H.P. Tan, Int. J. Heat Mass Transfer 141 (2019) 1227–1237.

    Article  Google Scholar 

  13. E. Jamesahar, M. Ghalambaz, A.J. Chamkha, Int. J. Heat Mass Transfer 100 (2016) 303–319.

    Article  Google Scholar 

  14. M. Grote, E. Pohl, P.H. Satogino, D. Diarra, Energy Proced. 120 (2017) 628–634.

    Article  Google Scholar 

  15. M. Jin, H.W. Ni, H. Zhang, Y.J. Kong, M.P. Guo, Journal of Wuhan University of Science and Technology 36 (2016) 248–252.

    Google Scholar 

  16. W.Y. Xu, J.D. Zhang, Journal of Plastic Engineering 19 (2012) No. 4, 74–79.

    Google Scholar 

  17. N.Y. Zhan, M. Yang, P.W. Xu, Scientia Sinica (Technologica) 40 (2010) 1052–1060.

    Article  Google Scholar 

  18. S.M. Zhang, C. Zhang, G.P. Mai, J.X. Song, Y.S. Che, J.L. He, J. Magn. Alloy. (2022) https://doi.org/10.1016/j.jma.2022.02.003.

    Article  Google Scholar 

  19. Z.Y. Li, L.J. Liu, X. Liu, Y.F. Zhang, J.F. Xiong, J. Cryst. Growth 360 (2012) 87–91.

    Article  Google Scholar 

  20. A. Castrillo, L. Moretti, E. Fasci, M.D. De Vizia, G. Case, L. Gianfrani, J. Molecular Spectroscopy 300 (2014) 131–138.

    Article  Google Scholar 

  21. C.H. He, X. Feng, Principles of chemical engineering, Beijing Science Press, Beijing, China, 2001.

    Google Scholar 

  22. B. Xiao, X.R. Zhu, J. Song, K.M. Gao, Metal. Ind. Autom. 13 (1989) No. 5, 22–25.

    Google Scholar 

  23. H. Zheng, H.L. Qian, X.F. Jin, Y. Chen, F. Fan, in: 15th Academic Conference on Space Structure, Spatial Structure Committee of Bridge and Structural Engineering Branch of China Civil Engineering Society, Shanghai, China, 2014, pp. 409–414.

  24. W.D. Shen, Power & Energy 7 (1987) No. 2, 36–42.

    Google Scholar 

  25. W.D. Shen, Power & Energy 7 (1987) No. 3, 51–56.

    Google Scholar 

  26. W.W. Cao, B. Zhu, C.G. Wang, Chin. J. Mech. Eng. (2007) No. 7, 6–10.

Download references

Acknowledgements

This research was financially supported by the Beijing Municipal Natural Science Foundation (No. 2212041) and National Natural Science Foundation of China (No. 51804232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-guang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Wc., Zhou, Y., Zhang, J. et al. Role of radiative and convective heat transfer during heating of an ingot product in a tubular furnace: experiment and simulation. J. Iron Steel Res. Int. 29, 1978–1985 (2022). https://doi.org/10.1007/s42243-022-00797-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00797-1

Keywords

Navigation