Skip to main content

Advertisement

Log in

Numerical Investigation of Shaft Gas Injection Operation in Oxygen-Enriched Ironmaking Blast Furnace

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Shaft gas injection is considered helpful for realizing an oxygen blast furnace (OBF) to mitigate CO2 emissions substantially. This paper presents a systematic study of the shaft injection for a 430-m3 industrial OBF using a process model. The OBF is operated at 35, 50, or 100 pct oxygen enrichment. It is combined with the reducing gas injection through blast tuyeres to achieve a reasonable flame temperature. The effects of shaft gas injection rate, shaft gas injection position, and shaft gas injection temperature are studied with fixed hot metal temperature, bosh gas volume, and flame temperature. The results show that the fuel rate decreases as the oxygen enrichment increases. It also decreases with increasing shaft gas injection rate/temperature but increases at a higher injection position. All these changes slow down when the values of the three variables are relatively large. At a higher oxygen enrichment or lower shaft gas injection position/rate, the replacement ratio of coke by the shaft injected gas increases, indicating better utilization of shaft gas energy. However, the replacement ratio increases first to a maximum and then gradually decreases with increasing shaft gas injection temperature, identifying an optimum injection temperature. The inner flow and thermochemical behaviors of OBF are analyzed in detail. It shows that the fuel reduction by shaft injection is a collected effect of decreased carbon consumption by raceway combustion and direct reduction. The former contributor plays a dominating role, benefiting from the pre-heating effect. The latter contributor results from the indirect reduction enhancement because of the intensified reducing atmosphere and increased temperature. These pre-heating and pre-reduction roles are quantified to elucidate the impacts of the flow rate, position, and temperature of shaft injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(a_{\rm FeO}\) :

The activity of molten wustite

\(A\) :

Domain for plane integration, \({\rm m}^{2}\)

\(A_{\rm c}\) :

Effective surface area of coke for reaction, \({\rm m}^{2}\)

\(A_{1}\) :

Constant for describing burden distribution pattern, \({\rm m}^{ - 2}\)

\(A_{2}\) :

Constant for describing burden distribution pattern, \({\rm m}^{ - 1}\)

BF:

Blast furnace

\(A_{3}\) :

Constant for describing burden distribution pattern

\(c_{\rm p}\) :

Specific heat, \({\rm J} \, {\rm kg}^{ - 1} \, {\rm K}^{ - 1}\)

\(C_{{{\rm SiO}_{2} }}\) :

Concentration of SiO2, \({\rm mol} \, {\rm m}^{ - 3}\)

CZ:

Cohesive zone

CBF:

Conventional blast furnace

\(d\) :

Diameter of solid phase, m

\(D\) :

Diffusion coefficient, \({\rm m}^{2} \, {\rm s}^{ - 1}\)

\(D_{{\rm s}5}\) :

Intra-particle diffusion coefficient of H2 in reduced iron phase, \({\rm m}^{2} \, {\rm s}^{ - 1}\)

\(E_{\rm f}\) :

Effectiveness factors of solution loss reaction by CO

\(E_{\rm f}{^{\prime}}\) :

Effectiveness factors of water gas reaction

\(E_{\rm gl}\) :

Volumetric enthalpy flux between gas and liquid, \({\rm W} \, {\rm m}^{ - 3}\)

EBF:

Experimental blast furnace

\(f_{\rm o}\) :

Fraction conversion of iron ore

\({\mathbf{F}}\) :

Interaction force per unit volume, \({\rm kg} \, {\rm m}^{ - 2} \, {\rm s}^{ - 2}\)

\({\mathbf{g}}\) :

Gravitational acceleration, \({\rm m} \, {\rm s}^{ - 2}\)

\(h_{ij}\) :

Heat transfer coefficient, \({\rm W} \, {\rm m}^{ - 2} \, {\rm K}^{ - 1}\)

\(H\) :

Enthalpy, \({\rm J} \, {\rm kg}^{ - 1}\)

\(\Delta H\) :

Reaction heat, \({\rm J} \, {\rm mol}^{ - 1}\)

HM:

Hot metal

\(k\) :

Thermal conductivity, \({\rm W} \, {\rm m}^{ - 1} \, {\rm K}^{ - 1}\)

\(k_{1}\) :

Rate constant of indirect reduction of iron ore by CO, \({\rm m} \, {\rm s}^{ - 1}\)

\(k_{2}\) :

Rate constant of direct reduction of molten wustite, \({\rm mol} \, {\rm m}^{ - 2} \, {\rm s}^{ - 1}\)

\(k_{3}\) :

Rate constant of solution loss reaction by CO, \({\rm m}^{3} \, {\rm kg}^{ - 1} \, {\rm s}^{ - 1}\)

\(k_{5}\) :

Rate constant of indirect reduction of iron ore by H2, \({\rm m} \, {\rm s}^{ - 1}\)

\(k_{6}\) :

Rate constant of water gas reaction, \({\rm m}^{3} \, {\rm kg}^{ - 1} \, {\rm s}^{ - 1}\)

\(k_{8}\) :

Rate constant of silica reduction reaction in slag, \({\rm m} \, {\rm s}^{ - 1}\)

\(k_{f}\) :

Gas-film mass transfer coefficient, \({\rm m} \, {\rm s}^{ - 1}\)

\(k_{{\rm f}5}\) :

Gas-film mass transfer coefficient in indirect reduction of iron ore by H2, \({\rm m} \, {\rm s}^{ - 1}\)

\(k_{{\rm f}6}\) :

Gas-film mass transfer coefficient water gas reaction, \({\rm m} \, {\rm s}^{ - 1}\)

\(k_{\rm se}^{\rm e}\) :

Thermal conductivity of solid, \({\rm W} \, {\rm m}^{ - 1} \, {\rm K}^{ - 1}\)

\(K_{1}\) :

Equilibrium constant of indirect reduction of iron ore by CO

\(K_{5}\) :

Equilibrium constant of indirect reduction of iron ore by H2

\(M_{i}\) :

Molar mass of \(i{{{\rm th}}}\) species in gas phase

\(M_{\rm sm}\) :

Molar mass of \({\text{FeO}}\) or flux in solid phase, \({\text{kg}} \, {\text{mol}}^{ - 1}\)

\(N_{\rm c}\) :

Number of coke in unit volume of bed, \({\rm m}^{ - 3}\)

\(N_{\rm FeO}\) :

Corrected molar fraction of FeO in slag

\(N_{\rm o}\) :

Number of iron oxide in unit volume of bed, \({\rm m}^{ - 3}\)

\(Nu\) :

Nusselt number

OBF:

Oxygen blast furnace

\(p\) :

Pressure, \({\rm Pa}\)

\(Pe_{\rm gx} ,Pe_{\rm gy}\) :

Peclet number in x or y direction

\(Pr\) :

Prandtl number

PCI:

Pulverized coal injection

\(R\) :

Gas constant, \( 8.314 \,{\rm J} \, {\rm mol}^{ - 1} \, {\rm K}^{ - 1}\)

\(r_{\rm throat}\) :

Radial distance in the throat, m

\(R_{\rm k}^{*}\) :

Reaction rate for \(k^{{{\rm th}}}\) reaction, \({\rm mol} \, {\rm m}^{ - 3} \, {\rm s}^{ - 1}\)

\(Re\) :

Reynolds number

\(S\) :

Source term

\(Sc\) :

Schmidt number

\(Sh_{\rm r}^{ * }\) :

Normalized shrinkage ratio

\(T\) :

Temperature, \({\rm K}\)

\({\mathbf{u}}\) :

Interstitial velocity, \({\rm m} \, {\rm s}^{ - 1}\)

\(\widetilde{u}\) :

Interstitial velocity vector, \({\rm m} \, {\rm s}^{ - 1}\)

\(V_{\rm b}\) :

Bed volume, \({\rm m}^{3}\)

\(V_{\rm ore}\) :

Volume fraction of ore

\(V_{\rm coke}\) :

Volume fraction of coke

\(Vol_{\rm cell}\) :

Volume of control volume, \({\rm m}^{3}\)

\(y_{i}\) :

Mole fraction of \(i{{{\rm th}}}\) species in gas phase

\(y_{\rm CO}^{*} ,y_{{{\rm H}_{2} }}^{*}\) :

Molar fraction of \({\text{CO}}\) and \({\text{H}}_{{2}}\) in equilibrium state for indirect reaction

\(\alpha\) :

Specific surface area, \({\rm m}^{2} \, {\rm m}^{ - 3}\)

\(\alpha_{\rm gs}\) :

Drag coefficient

\(\beta\) :

Mass increase coefficient of fluid phase associated with reactions, \({\rm kg} \, {\rm mol}^{ - 1}\)

\(\beta_{\rm gs}\) :

Drag coefficient

\(\Gamma\) :

Diffusion coefficient

\(\delta\) :

Distribution coefficient

\(\varepsilon\) :

Volume fraction

\(\eta\) :

Fractional acquisition of reaction heat

\({\mathbf{\rm I}}\) :

Identity tensor

\(\mu\) :

Viscosity, \({\rm kg} \, {\rm m}^{ - 1} \, {\rm s}^{ - 1}\)

\(\xi_{\rm o} ,\xi_{\rm c}\) :

Local ore, coke volume fraction

\(\rho\) :

Density, \({\rm kg} \, {\rm m}^{ - 3}\)

\({\varvec{\tau}}\) :

Stress tensor, \({\rm Pa}\)

\(\varphi\) :

General variable

\(\omega\) :

Mass fraction

\(\phi\) :

Average shape factor

\({\rm e}\) :

Effective

\({\rm g}\) :

Gas

\({\rm l}\) :

Liquid

\({\rm s}\) :

Solid

\({\rm o}\) :

Ore

\({\rm c}\) :

Coke

\(i\) :

Identifier (g, s or l)

\(i,m\) :

\(m{\rm th}\) Species in i phase

\(j\) :

Identifier (g, s or l)

\(k\) :

\(k{\rm th}\) Reaction

\(n\) :

Direction (x or y)

\(sm\) :

FeO or flux in solid phase

\({\rm e}\) :

Effective

\({\rm s}\) :

Solid

\({\rm T}\) :

Transpose

References

  1. W. Zhang, J. Dai, C.Z. Li, X.B. Yu, Z.L. Xue, and H. Saxén: Steel Res. Int., 2020, vol. 92, p. 2000326.

    Article  Google Scholar 

  2. H. Yamaoka and Y. Kamei: ISIJ Int., 1992, vol. 32, pp. 701–08.

    Article  CAS  Google Scholar 

  3. J. Stel, G. Louwerse, D. Sert, A. Hirsch, and N. Eklund: Steel Times International, 2013, vol. 37, pp. 26–29.

    Google Scholar 

  4. E. Karakaya, C. Nuur, and L. Assbring: J. Clean Prod., 2018, vol. 195, pp. 651–63.

    Article  Google Scholar 

  5. S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L.S. Ökvist, and J. Wikstrom: ISIJ Int., 2013, vol. 53, pp. 2065–71.

    Article  CAS  Google Scholar 

  6. M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, and M. Dahari: Renew Sust. Energy Rev., 2015, vol. 50, pp. 594–614.

    Article  CAS  Google Scholar 

  7. L. Ren, S. Zhou, T.D. Peng, and X.M. Ou: Renew. Sust. Energy Rev., 2021, vol. 143, p. 110846.

    Article  CAS  Google Scholar 

  8. H.Q. Nie, Z.Y. Li, S.B. Kuang, L.G. Yan, W.Q. Zhong, A.B. Yu, X.M. Mao, and H.F. Xu: Fuel, 2021, vol. 296, p. 120662.

    Article  CAS  Google Scholar 

  9. A.K. Biswas: Principles of Blast Furnace Ironmaking: Theory and Practice, Cootha Publishing House, Australia, 1981, p. 302.

    Google Scholar 

  10. F. Fink: Steel Times, 1996, vol. 36, pp. 398–99.

    Google Scholar 

  11. M.S. Qin, Z.K. Gao, G.L. Wang, and Y.T. Zhang: Ironmak. Steelmak., 1988, vol. 15, pp. 287–92.

    Google Scholar 

  12. O. Yotaro, H. Hirohisa, M. Masahiro, M. Hiroyuki, and S. Hiroshi: Tetsu-to-Hagane, 1989, vol. 75, pp. 1278–85.

    Article  Google Scholar 

  13. G.Q. Zuo and A. Hirsch: Rev. Metall., 2009, vol. 106, pp. 387–92.

    Article  CAS  Google Scholar 

  14. Y.H. Qi, D.L. Yan, J.J. Gao, J.C. Zhang, and M.K. Li: Iron Steel, 2011, vol. 46, pp. 6–8.

    CAS  Google Scholar 

  15. X.B. Yu, Z.J. Hu, and Y.S. Shen: Fuel, 2021, vol. 302, 121092.

    Article  CAS  Google Scholar 

  16. J.L. Zhang, G.W. Wang, J.G. Shao, and H.B. Zuo: J. Iron Steel Res. Int., 2014, vol. 21, pp. 151–58.

    Article  CAS  Google Scholar 

  17. P. Jin, Z.Y. Jiang, C. Bao, Y.X. Lu, J.L. Zhang, and X.X. Zhang: Steel Res. Int., 2016, vol. 87, pp. 320–29.

    Article  CAS  Google Scholar 

  18. P. Jin, Z.Y. Jiang, C. Bao, S.Y. Hao, and X.X. Zhang: Resour. Conserv. Recy., 2017, vol. 117, pp. 58–65.

    Article  Google Scholar 

  19. W. Zhang, J.H. Zhang, and Z.L. Xue: Energy, 2017, vol. 121, pp. 135–46.

    Article  CAS  Google Scholar 

  20. C.L. Li, Q.G. Xue, Y.L. Liu, Z.S. Dong, G. Wang, and J.S. Wang: Ironmak. Steelmak., 2017, vol. 46, pp. 761–70.

    Article  Google Scholar 

  21. M. Helle and H. Saxén: ISIJ Int., 2015, vol. 55, pp. 2047–55.

    Article  CAS  Google Scholar 

  22. X.F. She, X.W. An, J.S. Wang, Q.G. Xue, and L.T. Kong: J. Iron Steel Res. Int., 2017, vol. 24, pp. 608–16.

    Article  Google Scholar 

  23. W. Zhang, J.H. Zhang, Z.L. Xue, Z.S. Zou, and Y.H. Qi: ISIJ Int., 2016, vol. 56, pp. 1358–67.

    Article  CAS  Google Scholar 

  24. T. Miyashit, H. Nishio, T. Shimotsu, T. Yamada, and M. Ohtsuki: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 1–10.

    Article  Google Scholar 

  25. H. Yamaoka and Y. Kamei: ISIJ Int., 1992, vol. 32, pp. 709–15.

    Article  CAS  Google Scholar 

  26. M.A. Tseitlin, S.E. Lazutkin, and G.M. Styopin: ISIJ Int., 1994, vol. 34, pp. 570–73.

    Article  CAS  Google Scholar 

  27. S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res Int, 2018, vol. 89, p. 1700071.

    Article  Google Scholar 

  28. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 51–58.

    Article  CAS  Google Scholar 

  29. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 1410–17.

    Article  CAS  Google Scholar 

  30. Z.S. Dong, Q.G. Xue, H.B. Zu, X.F. She, J. Li, and J.S. Wang: ISIJ Int., 2016, vol. 56, pp. 1588–97.

    Article  CAS  Google Scholar 

  31. Z.S. Dong, J.S. Wang, H.B. Zuo, X.F. She, and Q.G. Xue: Particuology, 2017, vol. 32, pp. 63–72.

    Article  CAS  Google Scholar 

  32. Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Powder Technol., 2017, vol. 314, pp. 557–66.

    Article  CAS  Google Scholar 

  33. Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Fuel Process. Technol., 2020, vol. 202, p. 106369.

    CAS  Google Scholar 

  34. Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res Int, 2020, vol. 91, p. 2000071.

  35. X.F. Dong, A.B. Yu, J. Yagi, and P. Zulli: ISIJ Int., 2007, vol. 47, pp. 1553–70.

    Article  CAS  Google Scholar 

  36. M.S. Chu, H. Nogami, and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 2159–67.

    Article  CAS  Google Scholar 

  37. M. Chu and J. Yagi: Steel Res. Int., 2010, vol. 81, pp. 1043–50.

    Article  CAS  Google Scholar 

  38. H.T. Wang, M.S. Chu, T.L. Guo, W. Zhao, C. Feng, Z.G. Liu, and J. Tang: Steel Res. Int., 2016, vol. 87, pp. 539–49.

    Article  CAS  Google Scholar 

  39. Z.Y. Li, S.B. Kuang, A.B. Yu, J.J. Gao, Y.H. Qi, D.L. Yan, Y.T. Li, and X.M. Mao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995–2010.

    Article  CAS  Google Scholar 

  40. L.Z. Liu, Z.Y. Jiang, X.R. Zhang, Y.X. Lu, J.K. He, J.S. Wang, and X.X. Zhang: Energy, 2018, vol. 163, pp. 144–50.

    Article  CAS  Google Scholar 

  41. Z.G. Zhao, X.B. Yu, Y.S. Shen, Y.T. Li, H. Xu, and Z.J. Hu: Energy Fuel, 2020, vol. 34, pp. 15048–15060.

    Article  CAS  Google Scholar 

  42. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: JOM, 2015, vol. 67, pp. 1936–44.

    Article  CAS  Google Scholar 

  43. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: JOM, 2015, vol. 67, pp. 1945–55.

    Article  CAS  Google Scholar 

  44. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 467–84.

    Article  CAS  Google Scholar 

  45. Y. Ohno, M. Matsuura, H. Mitsufuji, and T. Furukawa: ISIJ Int., 1992, vol. 32, pp. 838–47.

    Article  CAS  Google Scholar 

  46. T. Inada, K. Takatani, K. Takata, and T. Yamamoto: ISIJ Int., 2003, vol. 43, pp. 1143–50.

    Article  CAS  Google Scholar 

  47. P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 748–55.

    Article  CAS  Google Scholar 

  48. J.A. de Castro, A.J. da Silva, Y. Sasaki, and J. Yagi: ISIJ Int., 2011, vol. 51, pp. 748–58.

    Article  Google Scholar 

  49. K. Yang, S. Choi, J. Chung, and J. Yagi: ISIJ Int., 2010, vol. 50, pp. 972–80.

    Article  CAS  Google Scholar 

  50. X.F. Dong, A.B. Yu, S.J. Chew, and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41, pp. 330–49.

    Article  Google Scholar 

  51. S.B. Kuang, Z.Y. Li, D.L. Yan, Y.H. Qi, and A.B. Yu: Miner. Eng., 2014, vol. 63, pp. 45–56.

    Article  CAS  Google Scholar 

  52. S.J. Zhang, A.B. Yu, P. Zulli, B. Wright, and U. Tüzün: ISIJ Int., 1998, vol. 38, pp. 1311–19.

    Article  CAS  Google Scholar 

  53. Z.Y. Li, S.B. Kuang, S.D. Liu, J.Q. Gan, A.B. Yu, Y.T. Li, and X.M. Mao: Powder Technol., 2019, vol. 353, pp. 385–97.

    Article  CAS  Google Scholar 

  54. Z.Y. Zhou, A.B. Yu, and P. Zulli: Prog. Comput. Fluid Dyn., 2004, vol. 4, pp. 39–45.

    Article  Google Scholar 

  55. Z.Y. Li, S.B. Kuang, D.L. Yan, Y.H. Qi, and A.B. Yu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 602–18.

    Article  CAS  Google Scholar 

  56. I. Muchi: Trans. Iron Steel Inst. Jpn., 1967, vol. 7, pp. 223–37.

    Article  CAS  Google Scholar 

  57. L.L. Jiao, S.B. Kuang, L.L. Liu, A.B. Yu, Y.T. Li, X.M. Mao, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 52, pp. 138–55.

    Article  Google Scholar 

  58. L.L. Jiao, S.B. Kuang, A.B. Yu, Y.T. Li, X.M. Mao, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 258–75.

    Article  CAS  Google Scholar 

  59. L.L. Liu, B.Y. Guo, S.B. Kuang, and A.B. Yu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2211–29.

    Article  CAS  Google Scholar 

  60. P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1998, vol. 38, pp. 239–45.

    Article  CAS  Google Scholar 

  61. J.Z. Chen, T. Akiyama, H. Nogami, J. Yagi, and H. Takahashi: ISIJ Int., 1993, vol. 33, pp. 664–71.

    Article  CAS  Google Scholar 

  62. L. L. Liu, S. B. Kuang, L. L. Jiao, B. Y. Guo and A. B. Yu: Fuel, 2021, p. 122832.

  63. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London, 1987.

    Google Scholar 

  64. M. Hatano and K. Kurita: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 448–56.

    Article  Google Scholar 

  65. T. Akiyama, R. Takahashi, and J. Yagi: ISIJ Int., 1993, vol. 33, pp. 703–10.

    Article  CAS  Google Scholar 

  66. S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89–94.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Science Foundation of China (Grant No. 52034003), the Australian Research Council, and Baowu for the financial support of this work.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aibing Yu or Shibo Kuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Yu, A., Jiao, L. et al. Numerical Investigation of Shaft Gas Injection Operation in Oxygen-Enriched Ironmaking Blast Furnace. Metall Mater Trans B 53, 2712–2734 (2022). https://doi.org/10.1007/s11663-022-02562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02562-x

Navigation