Skip to main content
Log in

Structural Constituents and Phases in High-Coercivity (Sm,Zr)(Co,Cu,Fe)z Alloys for Permanent Magnets

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

(Sm,Zr)(Co,Cu,Fe)6.0–6.8 alloys are prepared by vacuum induction melting and subsequently subjected to heat treatment in order to form a high-coercivity state, which includes annealing at 1160–1180°C for 5 h, quenching to room temperature, isothermal aging at 800°C for 20 h, and subsequent stepped tempering from 800 to 400°C at an average cooling rate of 100°C/h. The morphology and composition of main structural constituents of the alloys are studied by electron microscopy using samples in the form of individual grains separated from ingots. The hysteretic properties of the (Sm,Zr)(Co,Cu,Fe)z samples in the high-coercivity state are shown to correlate with the volume fractions of their main structural constituents, which, in turn, are controlled by the ratio of the 4f-/4d-/3d-element contents in the chemical composition of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Fidler, T. Schrefl, S. Hoefinger, and M. Hajduga, “Recent developments in hard magnetic bulk materials,” J. Phys.: Condens. Matter 16, 455–470 (2004).

    Google Scholar 

  2. C. H. Chen, M. S. Walmer, M. H. Walmer, S. Liu, G. E. Kuhl, and G. K. Simon, “New series of Sm2TM17 magnet materials for applications at temperatures up to 550°C,” Mater. Res. Soc. Symp. Proc. 577, 277–287 (1999).

    Article  CAS  Google Scholar 

  3. Y. Horiuchi, M. Hagiwara, K. Okamoto, T. Kobayashi, M. Endo, T. Kobayashi, T. Nakamura, and S. Sakurada, “Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet,” IEEE Trans. Magn. 49, 3221–3224 (2013).

    Article  CAS  Google Scholar 

  4. Y. Horiuchi, M. Hagiwara, K. Okamoto, T. Kobayashi, M. Endo, N. Sanada, and S. Sakurada, “Effect of pre-aging treatment on the microstructure and magnetic properties of Sm(Co,Fe,Cu,Zr)7.8 sintered magnets,” Mater. Trans. 55, 482–488 (2014).

    Article  CAS  Google Scholar 

  5. Y. Horiuchi, M. Hagiwara, M. Endo, N. Sanada, and S. Sakurada, “Influence of intermediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnets,” J. Appl. Phys. 117, 17C704 (2015).

  6. H. Chen, Y. Wang, Y. Yao, Q. Ju, F. Yun, Y. Li, S. P. Ringer, M. Yue, and R. Zheng, “Attractive-domain-wall-pinning controlled Sm–Co magnets overcome the coercivity—remanence trade-off,” Acta Mater. 164, 196–206 (2019).

    Article  CAS  Google Scholar 

  7. R. Gopalan, T. Ohkubo, and K. Hono, “Identification of the cell boundary phase in the isothermally aged commercial Sm(Co0.725Fe0.1Cu0.12Zr0.04)7.4 sintered magnet,” Scripta Mater. 54, 1345–1349 (2006).

    Article  CAS  Google Scholar 

  8. D. Goll, H. H. Stadelmaier, and H. Kronmüller, “Samarium–cobalt 2:17 magnets. Analysis of the coercive field of Sm2(CoFeCuZr)17 high-temperature permanent magnets,” Scripta Mater. 63, 243–245 (2010).

    Article  CAS  Google Scholar 

  9. H. Sepehri-Amin, J. Thielsch, J. Fischbacher, T. Ohkubo, T. Schrefl, O. Gutfleisch, and K. Hono, “Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets,” Acta Mater. 126, 1–10 (2017).

    Article  CAS  Google Scholar 

  10. K. Song, W. Sun, H. Chen, N. Yu, Y. Fang, M. Zhu, and W. Li, “Revealing on metallurgical behavior of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 sintered magnets,” AIP Advanc. 7, 056238 (2017).

    Article  Google Scholar 

  11. A. G. Popov, O. A. Golovnia, V. S. Gaviko, D. Yu. Vasilenko, D. Yu. Bratushev, V. I. Nithin Balaji, A. Kovács, K. G. Pradeep, and R. Gopalan, “Development of high-coercivity state in high-energy and high-temperature Sm–Co–Fe–Cu–Zr magnets upon step cooling,” J. Alloys Compd. 820, 153103 (2020).

    Article  CAS  Google Scholar 

  12. A. Lefevre, L. Cataldo, M. Th. Cohen-Adad, and B. F. Mentzen, “Optimization of 2/17 permanent magnets using the quinary Sm–Co–Cu–Fe–Zr phase diagram,” J. Alloys Compd. 275277, 556–559 (1998).

  13. Y. Q. Wang, Z. F. Shang, M. Yue, D. Wu, D. T. Zhang, H. G. Zhang, and W. Q. Liu, “Correlation between Fe content and z value in Sm(CobalFexCu0.06Zr0.025)z permanent magnets,” J. Magn. Magn. Mater. 474, 417–423 (2019).

    Article  CAS  Google Scholar 

  14. S. Wang, H. Chen, Y. Fang, C. Wang, L. Wang, M. Zhu, W. Lia, and G. C. Hadjipanayis, “Microstructure characteristics and optimization of Sm2Co17-type sintered magnets with different iron content,” J. Magn. Magn. Mater. 514, 167288 (2020).

    Article  CAS  Google Scholar 

  15. A. G. Dormidontov, N. B. Kolchugina, N. A. Dormidontov, Y. V. Milov, and A. S. Andreenko, “Structure of alloys for (Sm,Zr)(Co,Cu,Fe)z permanent magnets : II. Composition, magnetization reversal, and magnetic hardening of main structural constituents,” Materials 13, 5426 (2020).

    Article  CAS  Google Scholar 

  16. A. G. Dormidontov, N. B. Kolchugina, N. A. Dormidontov, and Y. V. Milov, “Structure of alloys (Sm,Zr)(Co,Cu,Fe)z permanent magnets : First level of heterogeneity,” Materials. 2020. 13 (17), 3893 (2020).

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-19-00689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Dormidontov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dormidontov, N.A., Kolchugina, N.B., Prokof’ev, P.A. et al. Structural Constituents and Phases in High-Coercivity (Sm,Zr)(Co,Cu,Fe)z Alloys for Permanent Magnets. Russ. Metall. 2022, 505–511 (2022). https://doi.org/10.1134/S0036029522050032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522050032

Keywords:

Navigation