Skip to main content
Log in

Bayesian optimal dynamic sampling procedures for on-farm field experimentation

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

For many decades, researchers have relied on small-scale agronomic experiments to provide input management recommendations to farmers. However, such experiments have most often provided production functions with large standard errors in addition to uncertainty about how well the estimates apply to different fields. To avoid such limitations, there has been a movement toward on-farm field experiments where experiments are conducted on the whole field. But questions remain as how best to conduct these on-farm field experiments and when it is most profitable to quit them. This study addressed these questions using a fully Bayesian decision-theoretic approach. Data were from Monte Carlo simulations assuming a linear response stochastic plateau production function from one field. Only uniform rate application was considered. The base model had corn and N prices of $0.116 kg−1 and $0.993 kg−1 and used 100 plots with an experimental design that allocated 10 plots to 0 kg of N, half of current optimal N (N*), and 150% of N*, with 70 using N*. With the base model, it was most profitable to quit such trials in year two. Sensitivity analysis suggested that the optimal strategy was to experiment on fewer plots, use levels of N closer to the optimum, and continue the experiment for longer than was done with the base model. These changes reduced losses from using nonoptimal levels of nitrogen. The assumptions used in the base model, however, might be more economical if plot sizes were small and so a smaller percentage of plots were used for experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not relevant.

Code availability

The R programming code used here is available from the corresponding author.

References

  • Ackello-Ogutu, C., Paris, Q., & Williams, W. A. (1985). Testing a von Liebig crop response function against polynomial specifications. American Journal of Agricultural Economics, 67(4), 873–880. https://doi.org/10.2307/1241829

    Article  Google Scholar 

  • Babcock, B. A., & Pautsch, G. R. (1998). Moving from uniform to variable fertilizer rates on Iowa corn: Effects on rates and returns. Journal of Agricultural and Resource Economics, 23, 385–400.

    Google Scholar 

  • Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer-Verlag.

    Google Scholar 

  • Boyer, C. N., Larson, J. A., Roberts, R. K., McClure, A. T., Tyler, D. D., & Zhou, V. (2013). Stochastic corn yield response functions to nitrogen for corn after corn, corn after cotton, and corn after soybeans. Journal of Agricultural and Applied Economics, 45, 669.

    Article  Google Scholar 

  • Bullock, D., & Mieno, T. (2017). An assessment of the value of information from on-farm field trials. Unpublished working paper, University of Illinois, Champaign, IL.

  • Bullock, D. S., & Mieno, T. (2019). The economic value of on-farm precision experimentation. In J. V. Stafford (Ed.), Precision agriculture’19 (pp. 327–342). Wageningen Academic Publishers.

    Google Scholar 

  • Brorsen, B. W., & Richter, F. G. C. (2012). Experimental designs for estimating plateau-type production functions and economically optimal input levels. Journal of Productivity Analysis, 38(1), 45–52. https://doi.org/10.1007/s11123-010-0204-0

    Article  Google Scholar 

  • Casanoves, F., Macchiavelli, R., & Balzarini, M. (2007). Models for multi-environment yield trials with fixed and random block effects and homogeneous and heterogeneous residual variances. The Journal of Agriculture of the University of Puerto Rico, 91(3–4), 117–131.

    Google Scholar 

  • Cerrato, M. D., & Blackmer, A. M. (1990). Comparison of models for describing corn yield response to nitrogen fertilizer. Agronomy Journal, 82, 138–143. https://doi.org/10.2134/agronj1990.00021962008200010030x

    Article  Google Scholar 

  • Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software, 71(9), 1–25. https://doi.org/10.18637/jss.v071.i09

    Article  Google Scholar 

  • Dhakal, C., Lange, K., Parajulee, M. N., & Segarra, E. (2019). Dynamic optimization of nitrogen in plateau cotton yield functions with nitrogen carryover considerations. Journal of Agricultural and Applied Economics. https://doi.org/10.1017/aae.2019.6

    Article  Google Scholar 

  • Drovandi, C. C., & Tran, M. N. (2018). Improving the efficiency of fully Bayesian optimal design of experiments using randomised quasi-Monte Carlo. Bayesian Analysis, 13(1), 139–162. https://doi.org/10.1214/16-BA1045

    Article  Google Scholar 

  • Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Chapman and Hall/CRC.

    Book  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472. https://doi.org/10.1214/ss/1177011136

    Article  Google Scholar 

  • Griffin, T., Fitzgerald, G. J., Lambert, D., Lowenberg-Deboer, J., Barnes, E. M., & Roth, R. (2005). Testing appropriate on-farm trial designs and statistical methods for cotton precision farming. In National cotton council Beltwide cotton conferences, New Orleans, Louisiana, January 4–7, 2005, Vol. 1, pp. 383–392.

  • Grinsztajn, L., Semenova, E., Margossian, C. C., & Riou, J. (2021). Bayesian workflow for disease transmission modeling in Stan. Statistics in Medicine, 40(27), 6209–6234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, C., & Chaloner, K. (2004). Bayesian experimental design for nonlinear mixed-effects models with application to HIV dynamics. Biometrics, 60(1), 25–33. https://doi.org/10.1111/j.0006-341X.2004.00148.x

    Article  PubMed  Google Scholar 

  • Heady, E. O. (1957). An econometric investigation of the technology of agricultural production functions. Econometrica: Journal of the Econometric Society, 25(2), 249–268.

    Article  Google Scholar 

  • Heady, E. O., & Dillon, J. L. (1964). Agricultural Production Functions. Ames Iowa State University Press.

    Google Scholar 

  • Heady, E. O., & Pesek, J. (1954). A fertilizer production surface with specification of economic optima for corn grown on calcareous ida silt loam. Journal of Farm Economics, 36(3), 466–482.

    Article  Google Scholar 

  • Heady, E. O., Pesek, J. T., & Brown, W. G. (1955). Crop response surfaces and economic optima in fertilizer use. Iowa Experiment Station Research Bulletin, 424.

  • Hossain, I., Epplin, F. M., Horn, G. W., & Krenzer Jr, E. G. (2004). Wheat production and management practices used by Oklahoma grain and livestock producers. Oklahoma Agricultural Experiment Station Bulletin B-818.

  • Kyveryga, P. M., Mueller, T. A., & Mueller, D. S. (2018). On-farm replicated strip trials. In D. K. Shannon, D. E. Clay, & N. R. Kitchen, Precision agriculture basics, ASA, CSSA, and SSSA, Madison, WI (pp. 189–208). https://doi.org/10.2134/precisionagbasics.2016.0096

  • Lambert, B. (2018). A student’s guide to bayesian statistics (1st ed.). Sage Publications.

    Google Scholar 

  • Lambert, D. M., & Cho, W. (2022). Geographically weighted regression estimation of the linear response and plateau function. Precision Agriculture, 23, 377–399.

    Article  Google Scholar 

  • Lemoine, N. P. (2019). Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos, 128(7), 912–928.

    Article  Google Scholar 

  • Li, X., Mieno, T., & Bullock, D. S. (2021). Economic performances of trial design methods in on-farm precision experimentation: A Monte Carlo evaluation. Data-Intensive Farm Management Virtual Presentation, July 17, 2021.

  • Liu, Y., Swinton, S. M., & Miller, N. R. (2006). Is site-specific yield response consistent over time? Does it pay? American Journal of Agricultural Economics, 88(2), 471–483.

    Article  Google Scholar 

  • Lindley, D. V. (1972). Bayesian statistics: A review. SIAM.

    Book  Google Scholar 

  • Llewelyn, R. V., & Featherstone, A. M. (1997). A comparison of crop production functions using simulated data for irrigated corn in western Kansas. Agricultural Systems, 54, 521–538. https://doi.org/10.1016/S0308-521X(96)00080-7

    Article  Google Scholar 

  • Makowski, D., & Wallach, D. (2002). It pays to base parameter estimation on a realistic description of model errors. Agronomie, 22, 1179–1189. https://doi.org/10.1051/agro:2002002

    Article  Google Scholar 

  • McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC.

    Book  Google Scholar 

  • McFadden, B. R., Brorsen, B. W., & Raun, W. R. (2018). Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating. Precision Agriculture, 19(1), 79–92. https://doi.org/10.1007/s11119-017-9499-4

    Article  Google Scholar 

  • Mitscherlich, E. A. (1909). The law of the minimum and the law of diminishing soil productivity. Landwirtschafliche Jahrbuecher, 38, 537–552.

    CAS  Google Scholar 

  • Müller, P., Berry, D. A., Grieve, A. P., & Krams, M. (2006). A Bayesian decision-theoretic dose-finding trial. Decision Analysis, 3(4), 197–207.

    Article  Google Scholar 

  • Ng’ombe, J. N., & Boyer, T. A. (2019). Determinants of earthquake damage liability assignment in Oklahoma: A Bayesian Tobit censored approach. Energy Policy, 131, 422–433. https://doi.org/10.1016/j.enpol.2019.05.013

    Article  Google Scholar 

  • Ng’ombe, J. N., & Brorsen, B. W. (2020). Using Hamiltonian Monte Carlo to estimate crop response functions with stochastic plateaus. In Proceedings of the selected presentation at the 2020 Southern Agricultural Economics Association annual meeting, Louisville, Kentucky, 1–4 February 2020. https://ageconsearch.umn.edu/record/302333.

  • Ng’ombe, J. N., & Lambert, D. M. (2021). Using Hamiltonian Monte Carlo via Stan to estimate crop input response functions with stochastic plateaus. Journal of Agriculture and Food Research, 6, 100226.

    Article  Google Scholar 

  • Ntzoufras, I. (2011). Bayesian modeling using WinBUGS (Vol. 698). Wiley.

    Google Scholar 

  • Overstall, A. M., & Woods, D. C. (2017). Bayesian design of experiments using approximate coordinate exchange. Technometrics, 59(4), 458–470. https://doi.org/10.1080/00401706.2016.1251495

    Article  Google Scholar 

  • Paris, Q. (1992). The von Liebig hypothesis. American Journal of Agricultural Economics, 74, 1019–1028. https://doi.org/10.2307/1243200

    Article  Google Scholar 

  • Ouedraogo, F., & Brorsen, B. W. (2018). Hierarchical Bayesian estimation of a stochastic plateau response function: Determining optimal levels of nitrogen fertilization. Canadian Journal of Agricultural Economics, 66(1), 87–102. https://doi.org/10.1111/cjag.12139

    Article  Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rodriguez, D. (2014). Testing two existing fertilizer recommendation algorithms: Stanford’s 1.2 rule for corn and site-specific nutrient management for irrigated rice. PhD dissertation, Department of Agricultural and Consumer Economics, University of Illinois, Urbana-Champaign, IL.

  • Ruffo, M. L., Bollero, G. A., Bullock, D. S., & Bullock, D. G. (2006). Site-specific production functions for variable rate corn nitrogen fertilization. Precision Agriculture, 7(5), 327–342.

    Article  Google Scholar 

  • Ryan, E. G., Drovandi, C. C., McGree, J. M., & Pettitt, A. N. (2016). A review of modern computational algorithms for Bayesian optimal design. International Statistical Review, 84, 128–154. https://doi.org/10.1111/insr.12107

    Article  Google Scholar 

  • Schulz, S., Zondervan-Zwijnenburg, M., Nelemans, S. A., Veen, D., Oldehinkel, A. J., Branje, S., & Meeus, W. (2021). Systematically defined informative priors in Bayesian estimation: An empirical application on the transmission of internalizing symptoms through mother-adolescent interaction behavior. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2021.620802

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellars, S. C., Schnitkey, G. D., & Gentry, L. F. (2020). Do Illinois farmers follow university-based nitrogen recommendations. Agricultural and Applied Economics Association meetings. https://ageconsearch.umn.edu/record/304617/files/19311.pdf

  • Spillman, W. J. (1923). Application of the law of diminishing returns to some fertilizer and feed data. Journal of Farm Economics, 5, 36–52.

    Article  Google Scholar 

  • Tembo, G., Brorsen, B. W., Epplin, F. M., & Tostão, E. (2008). Crop input response functions with stochastic plateaus. American Journal of Agricultural Economics, 90(2), 424–434. https://doi.org/10.1111/j.1467-8276.2007.01123.x

    Article  Google Scholar 

  • Tumusiime, E., Brorsen, B. W., Mosali, J., Johnson, J., Locke, J., & Biermacher, J. T. (2011). Determining optimal levels of nitrogen fertilizer using random parameter models. Journal of Agricultural and Applied Economics, 43, 541. https://doi.org/10.1017/S1074070800000067

    Article  Google Scholar 

  • von Liebig, J. (1840). Die organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Friedrich Vieweg und Sohn, Braunschweig

  • Wackerly, D., Mendenhall, W., & Scheaffer, R. L. (2014). Mathematical statistics with applications Cengage learning. Brooks/Cole.

    Google Scholar 

  • Walter, E., & Pronzato, L. (1985). How to design experiments that are robust to parameter uncertainty. IFAC Proceedings Volumes, 18(5), 921–926.

    Article  Google Scholar 

  • Young, A. (1784). Annals of Agriculture and Other Useful Arts, Vol. 42 (pp. 1786–1808).

  • Zhang, J., Zeng, L., Chen, C., Chen, D., & Wu, L. (2015). Efficient Bayesian experimental design for contaminant source identification. Water Resources Research, 51(1), 576–598. https://doi.org/10.1002/2014WR015740

    Article  Google Scholar 

Download references

Funding

This research was funded by the A. J. & Susan Jacques Chair and the Oklahoma Agricultural Experiment Station and USDA National Institute of Food and Agriculture, Hatch Project number OKL02939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Ng’ombe.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng’ombe, J.N., Brorsen, B.W. Bayesian optimal dynamic sampling procedures for on-farm field experimentation. Precision Agric 23, 2289–2311 (2022). https://doi.org/10.1007/s11119-022-09921-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09921-3

Keywords

Navigation