Skip to main content

Advertisement

Log in

Rutile TiO2 nanorods grown on carbon nanotubes as high-performance lithium-ion batteries anode via one-dimensional electron pathways

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Achieving the fast electron transport is an effective strategy to improve the performance of lithium-ion batteries (LIBs). Here, we develop a new method to quickly synthesize rutile TiO2 nanorods grown carbon nanotubes (R-TiO2 NR@CNTs) via a microwave-assisted hydrothermal method in 10 min, in which the R-TiO2 NR@CNTs sample was self-assembled by rutile TiO2 nanorods on the backbone of carbon nanotubes. When the R-TiO2 NR@CNTs was used as the anode for LIBs, it showed an initial discharge capacity of 315 mAh g−1 at 0.3 C which is higher than that of 270 mAh g−1 and 252 mAh g−1 for the physically mixed rutile TiO2 and CNT (R-TiO2/CNTs) and pure rutile TiO2 (R-TiO2) electrodes, respectively. Furthermore, it also showed an excellent cycling performance with capacity retentions of 93 % at 1 C after 200 cycles. The excellent lithium storage performance of R-TiO2 NR@CNTs sample may be contributed by the shortened electrons transfer distance via one-dimensional pathways along the CNTs and TiO2 nanorods. This work reports an effective strategy to quickly synthesize the electroactive materials for LIBs and proposes a fast electrochemical kinetics with shortened electron pathways.

Graphical abstract

Highlights

  • Microwave synthesis of composite materials of rutile TiO2 nanorods grown on carbon nanotubes.

  • The composite material exhibits excellent lithium storage performance.

  • The rutile nanorods shorten the lithium-ion charge and discharge diffusion path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Guo JL, Huang YY, Zhao SY, Li ZX, Wang Z, Shao GS, Liu JP (2021) Array-Structured double-ion cooperative adsorption sites as multifunctional sulfur hosts for lithium-sulfur batteries with low electrolyte/sulfur ratio. ACS Nano 15:16322–16334

    Article  CAS  Google Scholar 

  4. Hu C, Chen L, Hu YJ, Chen AP, Chen L, Jiang H, Li CZ (2021) Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv Mater 33:8

    Google Scholar 

  5. Lu Y, Wang J, Chen Y, Zheng X, Yao H, Mathur S, Hong Z (2021) Spatially controlled lithium deposition on silver-nanocrystals-decorated TiO2 nanotube arrays enabling ultrastable lithium metal anode. Adv Funct Mater 31:2009605

    Article  CAS  Google Scholar 

  6. Zhou G, Wang D-W, Yin L-C, Li N, Li F, Cheng H-M (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6:3214–3223

    Article  CAS  Google Scholar 

  7. Ma Z, Gao X, She Z, Pope MA, Li Y (2020) Ultrasmall TiOx nanoparticles rich in oxygen vacancies synthesized through a simple strategy for ultrahigh-rate lithium-ion batteries. ChemElectroChem 7:4124–4130

    Article  CAS  Google Scholar 

  8. Peng Y, Le Z, Wen M, Zhang D, Chen Z, Wu HB, Li H, Lu Y (2017) Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage. Nano Energy 35:44–51

    Article  CAS  Google Scholar 

  9. Shuning X, Peijue L, Wei Z, Guisheng L, Dieqing Z, Hexing L (2015) Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation. Nano Lett 15:4853–4858

    Article  Google Scholar 

  10. Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  11. Chen Z, Yuan Y, Zhou H, Wang X, Gan Z, Wang F, Lu Y (2014) 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv Mater 26:339–345

    Article  CAS  Google Scholar 

  12. Cheng Y, Chen Z, Wu H, Zhu M, Lu Y (2016) Ionic liquid-assisted synthesis of TiO2–carbon hybrid nanostructures for lithium-ion batteries. Adv Funct Mater 26:1338–1346

    Article  CAS  Google Scholar 

  13. Grzegórska A, Głuchowski P, Karczewski J, Ryl J, Wysocka I, Siuzdak K, Trykowski G, Grochowska K, Zielińska-Jurek A (2021) Enhanced photocatalytic activity of accordion-like layered Ti3C2 (MXene) coupled with Fe-modified decahedral anatase particles exposing {101} and {001} facets. Chem Eng J 426:130801

    Article  Google Scholar 

  14. Sandhu S, Kumar N, Singh VP, Singh V (2021) Synthesis of reactive faceted nanosized titania with enhanced photocatalytic performance under fluorine free conditions using deep eutectic solvent. Vacuum 184:109896

    Article  CAS  Google Scholar 

  15. Xiao S, Zhu W, Liu P, Liu F, Dai W, Zhang D, Chen W, Li H (2016) CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation. Nanoscale 8:2899–2907

    Article  CAS  Google Scholar 

  16. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50:11312–11359

    Article  CAS  Google Scholar 

  17. Kappe CO, Bartholomäus P, Doris D (2012) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094

    Article  Google Scholar 

  18. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91:1–8

    Article  Google Scholar 

  19. Shuning X, Dieqing Z, Donglai P, Wei Z, Peijue L, Yong C, Guisheng L, Hexing L (2019) A chloroplast structured photocatalyst enabled by microwave synthesis. Nat Commun 10:1570

    Article  Google Scholar 

  20. Liu H, Li W, Shen D, Zhao D, Wang G (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137:13161–13166

    Article  CAS  Google Scholar 

  21. Dahlman CJ, Heo S, Zhang Y, Reimnitz LC, He D, Tang M, Milliron DJ (2021) Dynamics of lithium insertion in electrochromic titanium dioxide nanocrystal ensembles. J Am Chem Soc 143:8278–8294

    Article  CAS  Google Scholar 

  22. Dieqing Z, Meicheng W, Shanshan Z, Peijue L, Wei Z, Guisheng L, Hexing L (2013) Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation. Appl Catal B 147:610–616

    Google Scholar 

  23. Run L, Ying D, Baibiao H (2009) Structural and electronic properties of iodine-doped anatase and rutile TiO2. Comp Mater Sci 45:223–228

    Article  Google Scholar 

  24. Wang P, Ohtani B (2020) Co-catalytic action of faceted non-noble metal deposits on Titania photocatalyst for multielectron oxygen reduction. Catalysts 10:12

    Article  CAS  Google Scholar 

  25. James A, Esfahani MMD, Woerner WR, Sinclair A, Ehm L, Oganov AR, Parise JB (2018) Theoretical and experimental investigations into novel oxynitride discovery in the GaN-TiO2 system at high pressure. Crystals 8:15

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFA0211004), and National Natural Science Foundation of China (21876112, 21876113, 22022608, 22106105), Shanghai Engineering Research Center of Green Energy Chemical Engineering and Shanghai Government (18SG41), Shanghai Scientific and Technological Innovation Project (20YF1432100, 21DZ1206300), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [LC, SX, SL, HC, QL, and LC, SX, DZ. The first draft of the manuscript was written by LC, SX, HS, ZM, DZ and commented on previous versions of the manuscript. In the process of manuscript revision, YT prepared materials, collected data and analyzed, revised the manuscript, and got the final manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuning Xiao or Dieqing Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Tao, Y., Shang, H. et al. Rutile TiO2 nanorods grown on carbon nanotubes as high-performance lithium-ion batteries anode via one-dimensional electron pathways. J Sol-Gel Sci Technol 103, 437–446 (2022). https://doi.org/10.1007/s10971-022-05835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05835-8

Keywords

Navigation