Skip to main content
Log in

Optimal feedback control for a class of fractional evolution equations with history-dependent operators

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we will study optimal feedback control problems derived by a class of Riemann-Liouville fractional evolution equations with history-dependent operators in separable reflexive Banach spaces. We firstly introduce suitable hypotheses to prove the existence and uniqueness of mild solutions for this kind of Riemann-Liouville fractional evolution equations with history-dependent operators. Then, by introducing a feedback iterative technique and applying Filippov theorem, we show the existence of feasible pairs and optimal control pairs of the optimal feedback control systems with history-dependent operators. Finally, we give some applications to illustrate our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bin, M.J., Deng, H.Y., Li, Y.X., Zhao, J.: Properties of the set of admissible “state control’’ part for a class of fractional semilinear evolution control systems. Fract. Calc. Appl. Anal. 24(4), 1275–1298 (2021). https://doi.org/10.1515/fca-2021-0055

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, P.Y., Zhang, X.P., Li, Y.X.: Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract. Calc. Appl. Anal. 23(1), 268–291 (2020). https://doi.org/10.1515/fca-2020-0011

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, P.Y., Zhang, X.P., Li, Y.X.: Nonlocal problem for fractional stochastic evolution equations with solution operators. Fract. Calc. Appl. Anal. 19(6), 1507–1526 (2016). https://doi.org/10.1515/fca-2016-0078

    Article  MathSciNet  MATH  Google Scholar 

  4. Denkowski, Z., Mig\(\acute{o}\)rski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Acad./Plenum Publ., Boston-Dordrecht-London-New York (2003)

  5. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Addison Wesley (1993)

  6. Granas, A., Dugundji, J.: Fixed Point Theory. Ser. Springer Monographs in Math., Springer-Verlag, New York (2003)

  7. Han, W., Migorski, S., Sofonea, M.: Analysis of a general dynamic history-dependent variational hemivariational inequality. Nonlinear Anal. RWA 36, 69–88 (2017)

    Article  MathSciNet  Google Scholar 

  8. Huang, Y., Liu, Z.H., Zeng, B.: Optimal control of feedback control systems governed by hemivariational inequalities. Computers and Math. with Appl. 70(8), 2125–2136 (2015)

    Article  MathSciNet  Google Scholar 

  9. Jiang, Y.R.: Optimal feedback control problems driven by fractional evolution hemivariational inequalities. Mathematical Methods in the Appl. Sci. 41, 4305–4326 (2018)

    Article  MathSciNet  Google Scholar 

  10. Kamenskill, M., Obukhovskill, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Ser. in Nonlinear Analysis and Applications, 7 (2001)

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studdies, 204, Elservier Science, Amsterdam (2006)

  12. Li, X.J., Yong, J.M.: Optimal Control Theory for infinite Dimensional Systems, Systems and Control: Foundations and Applications. Birkhäuser, Basel-Boston (1995)

    Book  Google Scholar 

  13. Li, X.W., Liu, Z.H.: Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Comtrol Optim. 56(5), 3569–3597 (2018)

    Article  MathSciNet  Google Scholar 

  14. Li, X.W., Liu, Z.H., Li, J., Tisdell, C.: Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Math. Scientia 39(1), 229–242 (2019)

    Article  MathSciNet  Google Scholar 

  15. Li, X.W., Li, Y.X., Liu, Z.H., Li, J.: Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 21(6), 1439–1470 (2018). https://doi.org/10.1515/fca-2018-0076

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Z.H., Li, X.W.: Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. on Control and Optimiz. 53(4), 1920–1933 (2015)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z.H., Li, X.M., Zeng, B.: Optimal feedback control for fractional neutral dynamical systems. Optimization 67(5), 549–564 (2018)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z.H., Li, X.W.: Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations. Commun. in Nonlin. Sci. and Numer. Simul. 18(6), 1362–1373 (2013)

  19. Liu, Z.H., Motreanu, D., Zeng, S.D.: Generalized penalty and regularization method for differential variational- hemivariationak inequalities. SIAM J. Optim. 31(2), 1158–1183 (2021)

    Article  MathSciNet  Google Scholar 

  20. Liu, Z.H., Migorski, S., Zeng, B.: Optimal feedback control and controllability for hyperbolic evolution inclusions of Clarke’s subdifferential type. Computers and Math. with Appl. 74(12), 3183–3194 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, Z.H., Zeng, S.D., Motreanu, D.: Evolutionary problems driven by variational inequalities. J. of Diff. Equations 260(9), 6787–6799 (2016)

    Article  MathSciNet  Google Scholar 

  22. Liu, Z.H., Sofonea, M.: Differential quasivariational inequalities in contact mechanics. Mathematics and Mechanics of Solids 24(3), 845–861 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, Z.H., Zeng, S.D., Motreanu, D.: Partial differential hemivariational inequalities. Advances in Nonlin. Anal. 7(4), 571–586 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Z.H., Motreanu, D., Zeng, S.D.: Nonlinear evolutionary systems driven by mixed variational inequalities and its applications. Nonlin. Analysis: Real World Appl. 42, 409–421 (2018)

    Article  MathSciNet  Google Scholar 

  25. Liu, Z.H., Migorski, S., Zeng, S.D.: Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J. of Diff. Equations 263(7), 3989–4006 (2017)

    Article  MathSciNet  Google Scholar 

  26. Liu, Z.H., Zeng, S.D., Bai, Y.R.: Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19(1), 188–211 (2016). https://doi.org/10.1515/fca-2016-0011

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, L., Liu, Z.H., Obukhovskii, V.: Second order differential variational inequalities involving anti-periodic boundary value conditions. J. Math. Anal. Appl. 473, 846–865 (2019)

    Article  MathSciNet  Google Scholar 

  28. Mees, A.L.: Dynamics of Feedback Systems. Wiley, New York (1981)

    MATH  Google Scholar 

  29. Migorski, S., Liu, Z.H., Zeng, S.D.: A class of history dependent differential variational inequalities with application to contact problems. Optimization 69(4), 743–775 (2020)

    Article  MathSciNet  Google Scholar 

  30. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Ser. Advances in Mechanics and Mathematics, Springer, New York (2013)

  31. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  32. Prüss, J.: Evolutionary Integral Equations and Applications. Ser. Monographs in Mathematics 87, Springer Basel AG, Basel-Boston-Berlin (1993)

  33. Sofonea, M., Han, W., Migorski, S.: Numerical analysis of history-dependent variational-hemivariational inequalities with applications to contact problems. European J. Appl. Math. 26, 427–452 (2015)

    Article  MathSciNet  Google Scholar 

  34. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles. Ser. Fields and Media, Springer, Heidelberg-Berlin (2010)

    Book  Google Scholar 

  35. Wang, J.R., Zhou, Y., Wei, W.: Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Systems and Control Letters 61(4), 472–476 (2012)

    Article  MathSciNet  Google Scholar 

  36. Xiao, C.E., Zeng, B., Liu, Z.H.: Feedback control for fractional impulsive evolution systems. Computers and Math. with Appl. 268, 924–936 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Zeng, B.: Feedback control systems governed by evolution equations. Optimization 63(3), 1223–1243 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zeng, B., Liu, Z.H.: Existence results for impulsive feedback control systems. Nonlin. Anal.: Hybrid Systems 33, 1–16 (2019)

  39. Zeng, S.D., Liu, Z.H., Migorski, S.: A class of fractional differential hemivariational inequalities with application to contact problem. Z. Angew. Math. Phys. 69(36), 1–36 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations, 2nd edn. World Scientific, WSPC (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

Project supported by NNSF of China Grant Nos. 11961074, 12071413; NSF of Guangxi Grant No. 2018GXNSFDA281028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Feng Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Z., Peng, S. et al. Optimal feedback control for a class of fractional evolution equations with history-dependent operators. Fract Calc Appl Anal 25, 1108–1130 (2022). https://doi.org/10.1007/s13540-022-00054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00054-y

Keywords

Mathematics Subject Classification

Navigation