Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanostructured block copolymer muscles

Abstract

High-performance actuating materials are necessary for advances in robotics, prosthetics and smart clothing. Here we report a class of fibre actuators that combine solution-phase block copolymer self-assembly and strain-programmed crystallization. The actuators consist of highly aligned nanoscale structures with alternating crystalline and amorphous domains, resembling the ordered and striated pattern of mammalian skeletal muscle. The reported nanostructured block copolymer muscles excel in several aspects compared with current actuators, including efficiency (75.5%), actuation strain (80%) and mechanical properties (for example, strain-at-break of up to 900% and toughness of up to 121.2 MJ m3). The fibres exhibit on/off rotary actuation with a peak rotational speed of 450 r.p.m. Furthermore, the reported fibres demonstrate multi-trigger actuation (heat and hydration), offering switchable mechanical properties and various operating modes. The versatility and recyclability of the polymer fibres, combined with the facile fabrication method, opens new avenues for creating multifunctional and recyclable actuators using block copolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fibre fabrication through SPC of hydrogels created from self-assembled ABA triblock copolymers.
Fig. 2: SAXS and WAXS characterizations of strain-processed fibres indicate that the structure is highly aligned and consists of alternating crystalline and amorphous domains.
Fig. 3: Strained fibres exhibit exceptional mechanical and actuation properties.
Fig. 4: Reversible and rotational actuation properties of strained fibres.

Similar content being viewed by others

Data availability

The datasets that support the finding of this study are available in ScholarSphere repository with the identifier(s) https://doi.org/10.26207/tvbb-rf14. Source data are provided with this paper.

References

  1. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  CAS  Google Scholar 

  2. Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841–843 (2003).

    Article  CAS  Google Scholar 

  3. Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    Article  CAS  Google Scholar 

  4. Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  Google Scholar 

  5. Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nat. Mater. 2, 413–418 (2003).

    Article  CAS  Google Scholar 

  6. Hannig, M. & Hannig, C. Nanomaterials in preventive dentistry. Nat. Nanotechnol. 5, 565–569 (2010).

    Article  CAS  Google Scholar 

  7. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  Google Scholar 

  8. Bell, F. I., McEwen, I. J. & Viney, C. Supercontraction stress in wet spider dragline. Nature 416, 37–37 (2002).

    Article  CAS  Google Scholar 

  9. Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008).

    Article  CAS  Google Scholar 

  10. He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    Article  CAS  Google Scholar 

  11. Lieber R. L. Skeletal Muscle Structure, Function, and Plasticity 2nd edn (Lippincott Williams & Wilkins, 2002).

  12. Puthucheary, Z., Montgomery, H., Moxham, J., Harridge, S. & Hart, N. Structure to function: muscle failure in critically ill patients. J. Physiol. 588, 4641–4648 (2010).

    Article  CAS  Google Scholar 

  13. Li, C. et al. Fast and programmable locomotion of hydrogel–metal hybrids under light and magnetic fields. Sci. Robot. 5, eabb9822 (2020).

    Article  Google Scholar 

  14. Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    Article  CAS  Google Scholar 

  15. Biddiss, E. & Chau, T. Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities. Med. Eng. Phys. 30, 403–418 (2008).

    Article  Google Scholar 

  16. Wang, W. et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Adv. 3, e1601984 (2017).

    Article  CAS  Google Scholar 

  17. Eschen, K., Granberry, R. & Abel, J. Guidelines on the design, characterization, and operation of shape memory alloy knitted actuators. Smart Mater. Struct. 29, 035036 (2020).

    Article  CAS  Google Scholar 

  18. Zhao, H. et al. Wearable sunlight-triggered bimorph textile actuators. Nano Lett. 21, 8126–8134 (2021).

    Article  CAS  Google Scholar 

  19. Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).

    Article  CAS  Google Scholar 

  20. Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).

    Article  CAS  Google Scholar 

  21. Mu, J. et al. Sheath-run artificial muscles. Science 365, 150–155 (2019).

    Article  CAS  Google Scholar 

  22. Yuan, J. et al. Shape memory nanocomposite fibers for untethered high-energy microengines. Science 365, 155–158 (2019).

    Article  CAS  Google Scholar 

  23. Chen, P. et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10, 1077–1083 (2015).

    Article  CAS  Google Scholar 

  24. Liu, D. et al. Spider dragline silk as torsional actuator driven by humidity. Sci. Adv. 5, eaau9183 (2019).

    Article  CAS  Google Scholar 

  25. Bates, F. S. & Fredrickson, G. Block copolymers—designer soft materials. Phys. Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  26. Bates, F. S. et al. Multiblock polymers: panacea or Pandora’s box? Science 336, 434–440 (2012).

    Article  CAS  Google Scholar 

  27. Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    Article  CAS  Google Scholar 

  28. Bates, C. M. & Bates, F. S. 50th anniversary perspective: block polymers—pure potential. Macromolecules 50, 3–22 (2017).

    Article  CAS  Google Scholar 

  29. Shin, J. et al. Pressure-sensitive adhesives from renewable triblock copolymers. Macromolecules 44, 87–94 (2011).

    Article  CAS  Google Scholar 

  30. Jeong, B., Bae, Y. H., Lee, D. S. & Kim, S. W. Biodegradable block copolymers as injectable drug-delivery systems. Nature 388, 860–862 (1997).

    Article  CAS  Google Scholar 

  31. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  32. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium–metal batteries. Nat. Mater. 12, 452–457 (2013).

    Article  CAS  Google Scholar 

  33. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

  34. Tu, Y.-M. et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nat. Mater. 19, 347–354 (2020).

    Article  CAS  Google Scholar 

  35. Phillip, W. A. et al. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 11, 2892–2900 (2011).

    Article  CAS  Google Scholar 

  36. Peinemann, K.-V., Abetz, V. & Simon, P. F. W. Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater. 6, 992–996 (2007).

    Article  CAS  Google Scholar 

  37. Lang, C. et al. Solvent-non-solvent rapid-injection for preparing nanostructured materials from micelles to hydrogels. Nat. Commun. 10, 3855 (2019).

    Article  CAS  Google Scholar 

  38. Lynd, N. A., Meuler, A. J. & Hillmyer, M. A. Polydispersity and block copolymer self-assembly. Prog. Polym. Sci. 33, 875–893 (2008).

    Article  CAS  Google Scholar 

  39. Li, M.-H., Keller, P., Yang, J. & Albouy, P.-A. An artificial muscle with lamellar structure based on a nematic triblock copolymer. Adv. Mater. 16, 1922–1925 (2004).

    Article  CAS  Google Scholar 

  40. Taribagil, R. R., Hillmyer, M. A. & Lodge, T. P. Hydrogels from ABA and ABC triblock polymers. Macromolecules 43, 5396–5404 (2010).

    Article  CAS  Google Scholar 

  41. Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    Article  CAS  Google Scholar 

  42. Kou, L. et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014).

    Article  CAS  Google Scholar 

  43. Zhu, L. et al. Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline–amorphous diblock copolymer. J. Am. Chem. Soc. 122, 5957–5967 (2000).

    Article  CAS  Google Scholar 

  44. Takahashi, Y. & Tadokoro, H. Structural studies of polyethers, (–(CH2)m–O–)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 6, 672–675 (1973).

    Article  CAS  Google Scholar 

  45. Ponçot, M. et al. Complementarities of high energy WAXS and Raman spectroscopy measurements to study the crystalline phase orientation in polypropylene blends during tensile test. Polymer 80, 27–37 (2015).

    Article  CAS  Google Scholar 

  46. Zhao, D. et al. Tunable multiscale nanoparticle ordering by polymer crystallization. ACS Cent. Sci. 3, 751–758 (2017).

    Article  CAS  Google Scholar 

  47. Rall, J. A. What makes skeletal muscle striated? Discoveries in the endosarcomeric and exosarcomeric cytoskeleton. Adv. Physiol. Educ. 42, 672–684 (2018).

    Article  Google Scholar 

  48. Schneidereit, D. et al. Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. Light Sci. Appl. 7, 79 (2018).

    Article  CAS  Google Scholar 

  49. Madden, J. D. W. et al. Artificial muscle technology: physical principles and naval prospects. IEEE J. Ocean. Eng. 29, 706–728 (2004).

    Article  Google Scholar 

  50. Lang, C. et al. Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes. ACS Nano 13, 8292–8302 (2019).

    Article  CAS  Google Scholar 

  51. Lang, C., Kumar, M. & Hickey, R. J. Influence of block sequence on the colloidal self-assembly of poly(norbornene)–block–poly(ethylene oxide) amphiphilic block polymers using rapid injection processing. Polym. Chem. 11, 375–384 (2020).

    Article  CAS  Google Scholar 

  52. Guo, C. & Bailey, T. S. Highly distensible nanostructured elastic hydrogels from AB diblock and ABA triblock copolymer melt blends. Soft Matter 6, 4807–4818 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research under the Young Investigator Prize (award 18RT0680, R.J.H.), the National Science Foundation through the DMREF programme (CMMI 2119717, R.J.H.) and the Materials Research Institute seed grant from The Pennsylvania State University (R.J.H.). M.K. was supported by National Science Foundation grant CBET 1946392 and DMREF programme CMMI 1627197. V.G. was supported in part by the Welch Foundation (grant F-1599). This research used the Complex Materials Scattering beamline of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract number DE-SC0012704. TEM, SEM, SAXS and WAXS measurements were taken at the Materials Characterization Lab (MCL) in the Materials Research Institute (MRI) at The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Contributions

C.L., M.K. and R.J.H. conceived the research. C.L. developed, prepared and characterized materials. C.L. measured mechanical and actuation properties. E.C.L. and Y.X. conducted X-ray measurements. C.L. and K.E.M. analysed actuation properties using video analysis. V.G. and R.H. developed the mechanical property model. C.L., M.K. and R.J.H. wrote the manuscript. R.J.H. supervised the research. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Robert J. Hickey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Xuanhe Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Tables 1–5.

Supplementary Video 1

Linear actuation by heating.

Supplementary Video 2

Linear actuation by hydration.

Supplementary Video 3

An umbrella that automatically opens when applying water.

Supplementary Video 4

Rotational actuation by hydration.

Supplementary Video 5

Rotational actuation by heating.

Source data

Source Data Fig. 1

Source data for Fig. 1d

Source Data Fig. 2

Source data for Figs. 2e–g, k

Source Data Fig. 3

Source data for Figs. 3a–f

Source Data Fig. 4

Source data for Figs. 4a–c,f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, C., Lloyd, E.C., Matuszewski, K.E. et al. Nanostructured block copolymer muscles. Nat. Nanotechnol. 17, 752–758 (2022). https://doi.org/10.1038/s41565-022-01133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01133-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing