Eur J Pediatr Surg 2022; 32(05): 383-390
DOI: 10.1055/s-0042-1745780
Review Article

Hirschsprung-Associated Enterocolitis: Transformative Research from Bench to Bedside

1   Department of General Surgery, Capital Institute of Pediatrics, Beijing, Beijing, China
,
Bo Li
2   Translational Medicine Program, Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Qian Jiang
3   Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
,
Qi Li
1   Department of General Surgery, Capital Institute of Pediatrics, Beijing, Beijing, China
,
4   Department of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Long Li
1   Department of General Surgery, Capital Institute of Pediatrics, Beijing, Beijing, China
› Author Affiliations
Funding This study was supported by the National Natural Science Foundation of China 81700451.

Abstract

Hirschsprung disease (HSCR) is a congenital disease that is characterized by the absence of intrinsic ganglion cells in the submucosal and myenteric plexuses of the distal colon and is the most common cause of congenital intestinal obstruction. Hirschsprung-associated enterocolitis (HAEC) is a life-threatening complication of HSCR, which can occur either before or after surgical resection of the aganglionic bowel. Even though HAEC is a leading cause of death in HSCR patients, its etiology and pathophysiology remain poorly understood. Various factors have been associated with HAEC, including the mucus barrier, microbiota, immune function, obstruction of the colon, and genetic variations. In this review, we examine our current mouse model of HAEC and how it informs our understanding of the disease. We also describe current emerging research that highlights the potential future of HAEC treatment.



Publication History

Received: 04 January 2022

Accepted: 11 February 2022

Article published online:
01 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Reference

  • 1 Sergi C. Hirschsprung's disease: historical notes and pathological diagnosis on the occasion of the 100(th) anniversary of Dr. Harald Hirschsprung's death. World J Clin Pediatr 2015; 4 (04) 120-125
  • 2 Whitehouse FR, Kernohan JW. Myenteric plexus in congenital megacolon; study of 11 cases. Arch Intern Med (Chic) 1948; 82 (01) 75-111
  • 3 Bodian M, Carter OO. A family study of Hirschsprung's disease. Ann Hum Genet 1963; 26: 261-277
  • 4 Parc R, Berrod JL, Tussiot J, Loygue J. [Megacolon in adults. Apropos of 76 cases]. Ann Gastroenterol Hepatol (Paris) 1984; 20 (03) 133-141
  • 5 Yanchar NL, Soucy P. Long-term outcome after Hirschsprung's disease: patients' perspectives. J Pediatr Surg 1999; 34 (07) 1152-1160
  • 6 Laughlin DM, Friedmacher F, Puri P. Total colonic aganglionosis: a systematic review and meta-analysis of long-term clinical outcome. Pediatr Surg Int 2012; 28 (08) 773-779
  • 7 Catto-Smith AG, Trajanovska M, Taylor RG. Long-term continence after surgery for Hirschsprung's disease. J Gastroenterol Hepatol 2007; 22 (12) 2273-2282
  • 8 Khazdouz M, Sezavar M, Imani B, Akhavan H, Babapour A, Khademi G. Clinical outcome and bowel function after surgical treatment in Hirschsprung's disease. Afr J Paediatr Surg 2015; 12 (02) 143-147
  • 9 Demehri FR, Halaweish IF, Coran AG, Teitelbaum DH. Hirschsprung-associated enterocolitis: pathogenesis, treatment and prevention. Pediatr Surg Int 2013; 29 (09) 873-881
  • 10 Pini Prato A, Rossi V, Avanzini S, Mattioli G, Disma N, Jasonni V. Hirschsprung's disease: what about mortality?. Pediatr Surg Int 2011; 27 (05) 473-478
  • 11 Pastor AC, Osman F, Teitelbaum DH, Caty MG, Langer JC. Development of a standardized definition for Hirschsprung's-associated enterocolitis: a Delphi analysis. J Pediatr Surg 2009; 44 (01) 251-256
  • 12 Elhalaby EA, Coran AG, Blane CE, Hirschl RB, Teitelbaum DH. Enterocolitis associated with Hirschsprung's disease: a clinical-radiological characterization based on 168 patients. J Pediatr Surg 1995; 30 (01) 76-83
  • 13 Marty TL, Seo T, Matlak ME, Sullivan JJ, Black RE, Johnson DG. Gastrointestinal function after surgical correction of Hirschsprung's disease: long-term follow-up in 135 patients. J Pediatr Surg 1995; 30 (05) 655-658
  • 14 Polley Jr TZ, Coran AG, Wesley JR. A ten-year experience with ninety-two cases of Hirschsprung's disease. Including sixty-seven consecutive endorectal pull-through procedures. Ann Surg 1985; 202 (03) 349-355
  • 15 Zhao L, Dhall D, Cheng Z. et al. Murine model of Hirschsprung-associated enterocolitis II: surgical correction of aganglionosis does not eliminate enterocolitis. J Pediatr Surg 2010; 45 (01) 206-211 , discussion 211–212
  • 16 Coran AG, Teitelbaum DH. Recent advances in the management of Hirschsprung's disease. Am J Surg 2000; 180 (05) 382-387
  • 17 Langer JC. Hirschsprung disease. Curr Opin Pediatr 2013; 25 (03) 368-374
  • 18 Frykman PK, Short SS. Hirschsprung-associated enterocolitis: prevention and therapy. Semin Pediatr Surg 2012; 21 (04) 328-335
  • 19 Pontarelli EM, Ford HR, Gayer CP. Recent developments in Hirschsprung's-associated enterocolitis. Curr Gastroenterol Rep 2013; 15 (08) 340
  • 20 Gosain A, Brinkman AS. Hirschsprung's associated enterocolitis. Curr Opin Pediatr 2015; 27 (03) 364-369
  • 21 Teitelbaum DH, Caniano DA, Qualman SJ. The pathophysiology of Hirschsprung's-associated enterocolitis: importance of histologic correlates. J Pediatr Surg 1989; 24 (12) 1271-1277
  • 22 De Filippo C, Pini-Prato A, Mattioli G. et al. Genomics approach to the analysis of bacterial communities dynamics in Hirschsprung's disease-associated enterocolitis: a pilot study. Pediatr Surg Int 2010; 26 (05) 465-471
  • 23 Wilson-Storey D, Scobie WG, McGenity KG. Microbiological studies of the enterocolitis of Hirschsprung's disease. Arch Dis Child 1990; 65 (12) 1338-1339
  • 24 Hardy SP, Bayston R, Spitz L. Prolonged carriage of Clostridium difficile in Hirschsprung's disease. Arch Dis Child 1993; 69 (02) 221-224
  • 25 Aslam A, Spicer RD, Corfield AP. Children with Hirschsprung's disease have an abnormal colonic mucus defensive barrier independent of the bowel innervation status. J Pediatr Surg 1997; 32 (08) 1206-1210
  • 26 Mattar AF, Coran AG, Teitelbaum DH. MUC-2 mucin production in Hirschsprung's disease: possible association with enterocolitis development. J Pediatr Surg 2003; 38 (03) 417-421 , discussion 417–421
  • 27 Thiagarajah JR, Yildiz H, Carlson T. et al. Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease. PLoS One 2014; 9 (06) e99944
  • 28 Cheng Z, Wang X, Dhall D. et al. Splenic lymphopenia in the endothelin receptor B-null mouse: implications for Hirschsprung associated enterocolitis. Pediatr Surg Int 2011; 27 (02) 145-150
  • 29 Frykman PK, Cheng Z, Wang X, Dhall D. Enterocolitis causes profound lymphoid depletion in endothelin receptor B- and endothelin 3-null mouse models of Hirschsprung-associated enterocolitis. Eur J Immunol 2015; 45 (03) 807-817
  • 30 Moore SW, Johnson G, Schneider JW. Elevated tissue immunoglobulins in Hirschsprung's disease—indication of early immunologic response. Eur J Pediatr Surg 2000; 10 (02) 106-110
  • 31 Medrano G, Cailleux F, Guan P, Kuruvilla K, Barlow-Anacker AJ, Gosain A. B-lymphocyte-intrinsic and -extrinsic defects in secretory immunoglobulin A production in the neural crest-conditional deletion of endothelin receptor B model of Hirschsprung-associated enterocolitis. FASEB J 2019; 33 (06) 7615-7624
  • 32 Tani G, Tomuschat C, O'Donnell AM, Coyle D, Puri P. Increased population of immature enteric glial cells in the resected proximal ganglionic bowel of Hirschsprung's disease patients. J Surg Res 2017; 218: 150-155
  • 33 Cornet A, Savidge TC, Cabarrocas J. et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease?. Proc Natl Acad Sci U S A 2001; 98 (23) 13306-13311
  • 34 Austin KM. The pathogenesis of Hirschsprung's disease-associated enterocolitis. Semin Pediatr Surg 2012; 21 (04) 319-327
  • 35 Li Y, Poroyko V, Yan Z. et al. Characterization of intestinal microbiomes of Hirschsprung's disease patients with or without enterocolitis using Illumina-MiSeq high-throughput sequencing. PLoS One 2016; 11 (09) e0162079
  • 36 Neuvonen MI, Korpela K, Kyrklund K. et al. Intestinal microbiota in Hirschsprung disease. J Pediatr Gastroenterol Nutr 2018; 67 (05) 594-600
  • 37 Tang W, Su Y, Yuan C. et al. Prospective study reveals a microbiome signature that predicts the occurrence of post-operative enterocolitis in Hirschsprung disease (HSCR) patients. Gut Microbes 2020; 11 (04) 842-854
  • 38 Garcia SB, Minto SB, Marques IS, Kannen V. Myenteric denervation of the gut with benzalkonium chloride: a review of forty years of an experimental model. Can J Gastroenterol Hepatol 2019; 2019: 3562492
  • 39 Sato A, Yamamoto M, Imamura K, Kashiki Y, Kunieda T, Sakata K. Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg 1978; 13 (04) 399-435
  • 40 Sakata K, Kunieda T, Furuta T, Sato A. Selective destruction of intestinal nervous elements by local application of benzalkonium solution in the rat. Experientia 1979; 35 (12) 1611-1613
  • 41 Yoneda A, Shima H, Nemeth L, Oue T, Puri P. Selective chemical ablation of the enteric plexus in mice. Pediatr Surg Int 2002; 18 (04) 234-237
  • 42 Niederreither K, Vermot J, Le Roux I, Schuhbaur B, Chambon P, Dollé P. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 2003; 130 (11) 2525-2534
  • 43 Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev Biol 2016; 417 (02) 139-157
  • 44 Fu M, Sato Y, Lyons-Warren A. et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 2010; 137 (04) 631-640
  • 45 Schill EM, Lake JI, Tusheva OA. et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 2016; 409 (02) 473-488
  • 46 Lake JI, Tusheva OA, Graham BL, Heuckeroth RO. Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. J Clin Invest 2013; 123 (11) 4875-4887
  • 47 Lake JI, Avetisyan M, Zimmermann AG, Heuckeroth RO. Neural crest requires Impdh2 for development of the enteric nervous system, great vessels, and craniofacial skeleton. Dev Biol 2016; 409 (01) 152-165
  • 48 Puri P, Shinkai T. Pathogenesis of Hirschsprung's disease and its variants: recent progress. Semin Pediatr Surg 2004; 13 (01) 18-24
  • 49 Robertson K, Mason I. Expression of Ret in the chicken embryo suggests roles in regionalisation of the vagal neural tube and somites and in development of multiple neural crest and placodal lineages. Mech Dev 1995; 53 (03) 329-344
  • 50 Pouliot Y. Phylogenetic analysis of the cadherin superfamily. BioEssays 1992; 14 (11) 743-748
  • 51 Tomuschat C, Puri P. RET gene is a major risk factor for Hirschsprung's disease: a meta-analysis. Pediatr Surg Int 2015; 31 (08) 701-710
  • 52 Romeo G, Ronchetto P, Luo Y. et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 1994; 367 (6461): 377-378
  • 53 Kusafuka T, Wang Y, Puri P. Mutation analysis of the RET, the endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung's disease. J Pediatr Surg 1997; 32 (03) 501-504
  • 54 Brooks AS, Oostra BA, Hofstra RM. Studying the genetics of Hirschsprung's disease: unraveling an oligogenic disorder. Clin Genet 2005; 67 (01) 6-14
  • 55 Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367 (6461): 380-383
  • 56 Pichel JG, Shen L, Sheng HZ. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382 (6586): 73-76
  • 57 Moore MW, Klein RD, Fariñas I. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382 (6586): 76-79
  • 58 Chatterjee S, Chakravarti A. A gene regulatory network explains RET-EDNRB epistasis in Hirschsprung disease. Hum Mol Genet 2019; 28 (18) 3137-3147
  • 59 Heuckeroth RO, Enomoto H, Grider JR. et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 1999; 22 (02) 253-263
  • 60 Heuckeroth RO, Lampe PA, Johnson EM, Milbrandt J. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol 1998; 200 (01) 116-129
  • 61 Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003; 130 (10) 2187-2198
  • 62 Hosoda K, Hammer RE, Richardson JA. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994; 79 (07) 1267-1276
  • 63 Baynash AG, Hosoda K, Giaid A. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 1994; 79 (07) 1277-1285
  • 64 Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2003; 40 (05) 905-916
  • 65 Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 2006; 133 (10) 2075-2086
  • 66 Kusafuka T, Puri P. Mutations of the endothelin-B receptor and endothelin-3 genes in Hirschsprung's disease. Pediatr Surg Int 1997; 12 (01) 19-23
  • 67 Zaitoun I, Erickson CS, Barlow AJ. et al. Altered neuronal density and neurotransmitter expression in the ganglionated region of Ednrb null mice: implications for Hirschsprung's disease. Neurogastroenterol Motil 2013; 25 (03) e233-e244
  • 68 Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci 1998; 18 (01) 237-250
  • 69 Corpening JC, Cantrell VA, Deal KK, Southard-Smith EM. A Histone2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn 2008; 237 (04) 1119-1132
  • 70 Lang D, Chen F, Milewski R, Li J, Lu MM, Epstein JA. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest 2000; 106 (08) 963-971
  • 71 Yang JT, Liu CZ, Villavicencio EH, Yoon JW, Walterhouse D, Iannaccone PM. Expression of human GLI in mice results in failure to thrive, early death, and patchy Hirschsprung-like gastrointestinal dilatation. Mol Med 1997; 3 (12) 826-835
  • 72 Cheng Z, Dhall D, Zhao L. et al. Murine model of Hirschsprung-associated enterocolitis. I: phenotypic characterization with development of a histopathologic grading system. J Pediatr Surg 2010; 45 (03) 475-482
  • 73 Fujimoto T. Natural history and pathophysiology of enterocolitis in the piebald lethal mouse model of Hirschsprung's disease. J Pediatr Surg 1988; 23 (03) 237-242
  • 74 Fujimoto T, Reen DJ, Puri P. Inflammatory response in enterocolitis in the piebald lethal mouse model of Hirschsprung's disease. Pediatr Res 1988; 24 (02) 152-155
  • 75 Nakatsuji T, Ieiri S, Masumoto K, Akiyoshi J, Taguchi T, Suita S. Intracellular calcium mobilization of the aganglionic intestine in the endothelin B receptor gene-deficient rat. J Pediatr Surg 2007; 42 (10) 1663-1670
  • 76 Won KJ, Torihashi S, Mitsui-Saito M. et al. Increased smooth muscle contractility of intestine in the genetic null of the endothelin ETB receptor: a rat model for long segment Hirschsprung's disease. Gut 2002; 50 (03) 355-360
  • 77 Dembowski C, Hofmann P, Koch T. et al. Phenotype, intestinal morphology, and survival of homozygous and heterozygous endothelin B receptor–deficient (spotting lethal) rats. J Pediatr Surg 2000; 35 (03) 480-488
  • 78 Garcia-Barceló MM, Fong PY, Tang CS. et al. Mapping of a Hirschsprung's disease locus in 3p21. Eur J Hum Genet 2008; 16 (07) 833-840
  • 79 Crone SA, Negro A, Trumpp A, Giovannini M, Lee KF. Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron 2003; 37 (01) 29-40
  • 80 Brizzolara A, Torre M, Favre A, Pini Prato A, Bocciardi R, Martucciello G. Histochemical study of Dom mouse: a model for Waardenburg-Hirschsprung's phenotype. J Pediatr Surg 2004; 39 (07) 1098-1103
  • 81 Breau MA, Pietri T, Eder O. et al. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development 2006; 133 (09) 1725-1734
  • 82 Li JC, Mi KH, Zhou JL, Busch L, Kuhnel W. The development of colon innervation in trisomy 16 mice and Hirschsprung's disease. World J Gastroenterol 2001; 7 (01) 16-21
  • 83 Leffler A, Wedel T, Busch LC. Congenital colonic hypoganglionosis in murine trisomy 16—an animal model for Down's syndrome. Eur J Pediatr Surg 1999; 9 (06) 381-388
  • 84 Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. RET-deficient mice: an animal model for Hirschsprung's disease and renal agenesis. J Intern Med 1995; 238 (04) 327-332
  • 85 Lipman NS, Wardrip CL, Yuan CS, Coventry S, Bunte RM, Li X. Familial megacecum and colon in the rat: a new model of gastrointestinal neuromuscular dysfunction. Lab Anim Sci 1998; 48 (03) 243-252
  • 86 Chen X, Meng X, Zhang H. et al. Intestinal proinflammatory macrophages induce a phenotypic switch in interstitial cells of Cajal. J Clin Invest 2020; 130 (12) 6443-6456
  • 87 Porokuokka LL, Virtanen HT, Lindén J. et al. Gfra1 underexpression causes Hirschsprung's disease and associated enterocolitis in mice. Cell Mol Gastroenterol Hepatol 2019; 7 (03) 655-678
  • 88 Arnaud AP, Hascoet J, Berneau P. et al. A piglet model of iatrogenic rectosigmoid hypoganglionosis reveals the impact of the enteric nervous system on gut barrier function and microbiota postnatal development. J Pediatr Surg 2021; 56 (02) 337-345
  • 89 Chusilp S, Li B, Lee D, Lee C, Vejchapipat P, Pierro A. Intestinal organoids in infants and children. Pediatr Surg Int 2020; 36 (01) 1-10
  • 90 Yui S, Nakamura T, Sato T. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 2012; 18 (04) 618-623