Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules

Abstract

Upscalable fabrication of efficient and stable perovskite solar modules is urgently needed for commercialization. Here we introduce methylammonium chloride additives in the co-solvent system of N-methyl-2-pyrrolidone/N,N-dimethylformamide to control the formation of intermediate phases during the growth of formamidinium–caesium lead triiodide perovskite films. We achieve high-quality films upon drying without the use of anti-solvent. By implementing bulk and surface passivation, champion efficiencies of 24.02% for a small-sized solar cell and 20.5% for a 5 cm × 5 cm solar mini-module on an aperture area of 22.4 cm2 (geometric fill factor 96%) are achieved by spin-coating. The fully blade-coated perovskite solar sub-module demonstrates a champion efficiency of 15.3% on an aperture area of 205 cm2. The solar mini-module exhibits impressive operational stability with a T80 lifetime of over 1,000 h at maximum power point tracking under continuous light illumination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solar sub-module configuration and intermediate phase-modulated growth strategy for scalable deposition of the perovskite layer.
Fig. 2: Nucleation and growth process characterization of self-drying perovskite films.
Fig. 3: Morphology and defect modulation.
Fig. 4: Photovoltaic performance characterization.
Fig. 5: Scalable printing and stability characterization.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information. Source Data and Supplementary Data are provided with this paper. Source data are provided with this paper.

References

  1. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  Google Scholar 

  2. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  Google Scholar 

  3. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  Google Scholar 

  4. Park, N.-G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  Google Scholar 

  5. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    Article  Google Scholar 

  6. Lee, J. W., Lee, D. K., Jeong, D. N. & Park, N. G. Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 29, 1807047 (2018).

    Article  Google Scholar 

  7. Lee, S. W., Bae, S., Kim, D. & Lee, H. S. Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32, e2002202 (2020).

    Article  Google Scholar 

  8. Qiu, L., He, S., Ono, L. K., Liu, S. & Qi, Y. B. Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett. 4, 2147–2167 (2019).

    Article  Google Scholar 

  9. Howard, I. A. et al. Coated and printed perovskites for photovoltaic applications. Adv. Mater. 31, e1806702 (2019).

    Article  Google Scholar 

  10. Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641 (2021).

    Article  Google Scholar 

  11. Tang, S. et al. Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017).

    Article  Google Scholar 

  12. Tong, G. et al. Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000 h. Nano Energy 87, 106152 (2021).

    Article  Google Scholar 

  13. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  Google Scholar 

  14. Qiu, L. et al. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv. Funct. Mater. 29, 1806779 (2018).

    Article  Google Scholar 

  15. Bu, T. et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018).

    Article  Google Scholar 

  16. Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    Article  Google Scholar 

  17. Dagar, J. et al. Compositional and interfacial engineering yield high-performance and stable p-i-n perovskite solar cells and mini-modules. ACS Appl. Mater. Interfaces 13, 13022–13033 (2021).

    Article  Google Scholar 

  18. Hanul, Min et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  Google Scholar 

  19. Mingyu, Jeong et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

    Article  Google Scholar 

  20. Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    Article  Google Scholar 

  21. Qiu, L. et al. Hybrid chemical vapor deposition enables scalable and stable Cs–FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. J. Mater. Chem. A 7, 6920–6929 (2019).

    Article  Google Scholar 

  22. Zhang, J. et al. Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. J. Mater. Chem. A 8, 8447–8454 (2020).

    Article  Google Scholar 

  23. Yang, Z. et al. Slot-die coating large-area formamidinium–cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 7, eabg3749 (2021).

    Article  Google Scholar 

  24. Bu, T. et al. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    Article  Google Scholar 

  25. Zeng, L. et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy Environ. Sci. 13, 4666–4690 (2020).

    Article  Google Scholar 

  26. Saki, Z., Byranvand, M. M., Taghavinia, N., Kedia, M. & Saliba, M. Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14, 5690–5722 (2021).

    Article  Google Scholar 

  27. Rong, Y. et al. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. J. Phys. Chem. Lett. 9, 2707–2713 (2018).

    Article  Google Scholar 

  28. Chen, S. et al. Stabilizing perovskite–substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  Google Scholar 

  29. Yoo, J. W. et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 5, 2420–2436 (2021).

    Article  Google Scholar 

  30. Petrov, A. A. et al. Formamidinium haloplumbate intermediates: the missing link in a chain of hybrid perovskites crystallization. Chem. Mater. 32, 7739–7745 (2020).

    Article  Google Scholar 

  31. Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article  Google Scholar 

  32. Syzgantseva, O. A., Saliba, M., Gratzel, M. & Rothlisberger, U. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping. J. Phys. Chem. Lett. 8, 1191–1196 (2017).

    Article  Google Scholar 

  33. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  Google Scholar 

  34. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  Google Scholar 

  35. Zhu, T., Zheng, D., Rager, M.-N. & Pauporté, T. The stabilization of formamidinium lead tri‐iodide perovskite through a methylammonium‐based additive for high‐efficiency solar cells. Sol. RRL 4, 2000348 (2020).

    Article  Google Scholar 

  36. Ye, F. et al. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33, e2007126 (2021).

    Article  Google Scholar 

  37. Wu, C. et al. Crystallization of HC(NH2)2PbI3 black polymorph by solvent intercalation for low temperature solution processing of perovskite solar cells. J. Phys. Chem. C. 120, 26710–26719 (2016).

    Article  Google Scholar 

  38. Kim, Y. C. et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6, 1502104 (2016).

    Article  Google Scholar 

  39. Ng, A. et al. A cryogenic process for antisolvent-free high-performance perovskite solar cells. Adv. Mater. 30, e1804402 (2018).

    Article  Google Scholar 

  40. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965).

    Article  MathSciNet  Google Scholar 

  41. Kresse, G. & Joubert, D. P. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  42. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  43. Perdew, JohnP., Burke, Kieron & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 27, 1787–1799 (2006).

    Google Scholar 

  44. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

  45. Huang, Y. et al. The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals. J. Mater. Chem. A 5, 8537–8544 (2017).

    Article  Google Scholar 

  46. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  47. Marronnier, A. et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486 (2018).

    Article  Google Scholar 

  48. Trots, D. M. & Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 69, 2520–2526 (2008).

    Article  Google Scholar 

  49. Hu, Y. et al. Standardizing perovskite solar modules beyond cells. Joule 3, 2076–2085 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University, the OIST R&D Cluster Research Program, the OIST Proof of Concept (POC) Program and JST A-STEP grant number JPMJTM20HS, Japan. We thank the OIST Micro/Nanofabrication Section and Imaging Section for the support.

Author information

Authors and Affiliations

Authors

Contributions

Y.B.Q. supervised the project. Y.B.Q. and T.B. conceived the ideas. T.B. designed the experiments and conducted the corresponding device and module fabrication and characterization. L.K.O. contributed to part of the characterization and analyses. J.L. helped with the X-ray diffraction and time-resolved photoluminescence mapping characterization. J.S. conducted the density functional theory calculations. G.T. helped with the stability test. Y.B.Q. contributed to part of the atomic force microscopy measurements. J.Z. contributed to part of the perovskite solar cell measurements. Y.L., S.K., W.Z., J.C., F.H. and Y.-B.C. provided valuable suggestions for the manuscript. Y.B.Q. and T.B. participated in all of the data analyses. Y.B.Q. and T.B. wrote the paper, and all authors revised the paper.

Corresponding author

Correspondence to Yabing Qi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Francesco Di Giacomo, Jin Young Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–4, and notes 1 and 2.

Reporting Summary

Supplementary Table 1

Source Data for Supplementary Tables 1–4.

Supplementary Data 1

Source Data for Supplementary Figs. 1, 4, 6–8, 10, 13–18, 20–22, 25, 26.

Source data

Source Data for Fig. 2

XRD Source Data.

Source Data for Fig. 3

XRD Source Data.

Source Data for Fig. 4

Photovoltaic Performance Source Data.

Source Data for Fig. 5

Photovoltaic Performance and Stability Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, T., Ono, L.K., Li, J. et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat Energy 7, 528–536 (2022). https://doi.org/10.1038/s41560-022-01039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01039-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing