1932

Abstract

The Mammoth Steppe was the dominant terrestrial biome of the Northern Hemisphere during the late Pleistocene. It encompassed a nonanalog community of animals living in a cold and treeless steppe-tundra landscape. The high diversity of species, including megafauna, could be supported by a productive environment. The carbon-13 and nitrogen-15 abundances in bone collagen confirmed that the coexistence of the large herbivores was facilitated by a pronounced dietary niche partitioning, with some species relatively flexible in the exploitation of browse and graze, while others were more specialized. The isotopic abundances of carbon and nitrogen in carnivores confirm a dietary partitioning, probably based on the size of prey, with an increasingly generalist behavior emerging after the Last Glacial Maximum with notable exceptions. Isotopic investigation reveals dynamic processes of ecological displacement and replacement, shedding new light on the potential niche spectrum of extant species that are now present as relic populations.

  • ▪  The Mammoth Steppe is an extinct nonanalog ecosystem with high productivity and biodiversity despite the cold and dry conditions of the Last Glacial Period.
  • ▪  Stable isotopes reveal that niche partitioning among herbivores and carnivores is a dominant trait of the Mammoth Steppe.
  • ▪  Switches in preferred prey and ecological replacement are observed among carnivores over time, with the few highly specialized predators going extinct.
  • ▪  Warmer and more humid conditions preceding the Holocene impacted large herbivores in most regions of the Mammoth Steppe, driving some of the largest ones to extinction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-100821-081832
2022-05-31
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-100821-081832.html?itemId=/content/journals/10.1146/annurev-earth-100821-081832&mimeType=html&fmt=ahah

Literature Cited

  1. Ambrose SH, Norr L 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. Prehistoric Human Bone JB Lambert, G Grupe 1–37 Berlin: Springer-Verlag
    [Google Scholar]
  2. Amundson R, Austin AT, Schuur EA, Yoo K, Matzek V et al. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17:1031
    [Google Scholar]
  3. Arppe L, Karhu JA, Vartanyan S, Drucker DG, Etu-Sihvola H, Bocherens H. 2019. Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population. Quat. Sci. Rev. 222:105884
    [Google Scholar]
  4. Balasse M, Bocherens H, Mariotti A, Ambrose SH. 2001. Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: an experimental study of dentine collagen of cattle (Bos taurus). J. Archaeol. Sci. 28:3235–45
    [Google Scholar]
  5. Barnett BA. 1994. Carbon and nitrogen isotope ratios of caribou tissues, vascular plants, and lichens from northern Alaska. Master's Thesis, Univ. Alaska, Fairbanks
  6. Baryshnikov G. 1999. Chronological and geographical variability of Crocuta spelaea (Carnivora, Hyaenidae) from the Pleistocene of Russia. Deinsea 6:1155–74
    [Google Scholar]
  7. Baumann C, Pfrengle S, Münzel SC, Molak M, Feuerborn TR et al. 2021. A refined proposal for the origin of dogs: the case study of Gnirshöhle, a Magdalenian cave site. Sci. Rep. 11:15137
    [Google Scholar]
  8. Baumann C, Starkovich BM, Drucker DG, Münzel SC, Conard NJ, Bocherens H. 2020. Dietary niche partitioning among Magdalenian canids in southwestern Germany and Switzerland. Quat. Sci. Rev. 227:106032
    [Google Scholar]
  9. Bocherens H. 2003. Isotopic biogeochemistry and the palaeoecology of the mammoth steppe fauna. Deinsea 9:157–76
    [Google Scholar]
  10. Bocherens H. 2015. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 117:42–71
    [Google Scholar]
  11. Bocherens H, Baryshnikov G, Van Neer W. 2014a. Were bears or lions involved in salmon accumulation in the Middle Palaeolithic of the Caucasus? An isotopic investigation in Kudaro 3 cave. Quat. Int. 339:112–18
    [Google Scholar]
  12. Bocherens H, Billiou P-M, Bonjean D, Otte M, Mariotti A 1997. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium). Quat. Res. 48:3370–80
    [Google Scholar]
  13. Bocherens H, Drucker D. 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol. 13:1–246–53
    [Google Scholar]
  14. Bocherens H, Drucker DG 2021. Isotopic insights on ecological interactions between humans and woolly mammoths during the Middle and Upper Palaeolithic in Europe. Human-Elephant Interactions: From Past to Present GE Konidaris, R Barkai, V Tourloukis, K Harvati 349–62 Tübingen, Ger: Tübingen Univ. Press
    [Google Scholar]
  15. Bocherens H, Drucker DG, Billiou D, Geneste JM, van der Plicht J. 2006. Bears and humans in Chauvet Cave (Vallon-Pont-d'Arc, Ardèche, France): insights from stable isotopes and radiocarbon dating of bone collagen. J. Hum. Evol. 50:3370–76
    [Google Scholar]
  16. Bocherens H, Drucker DG, Billiou D, Patou-Mathis M, Vandermeersch B. 2005. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J. Hum. Evol. 49:171–87
    [Google Scholar]
  17. Bocherens H, Drucker DG, Bonjean D, Bridault A, Conard N et al. 2011a. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: prey choice, competition and implications for extinction. Quat. Int. 245:2249–61
    [Google Scholar]
  18. Bocherens H, Drucker DG, Germonpré M, Lázničková-Galetov M, Naito YI et al. 2015. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quat. Int. 359:211–28
    [Google Scholar]
  19. Bocherens H, Drucker DG, Madelaine S. 2014b. Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: implications for early modern human palaeodiet and palaeoenvironment. J. Hum. Evol. 69:31–43
    [Google Scholar]
  20. Bocherens H, Fizet M, Mariotti A. 1994. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107:3–4213–25
    [Google Scholar]
  21. Bocherens H, Fizet M, Mariotti A, Lange-Badre B, Vandermeersch B et al. 1991. Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man. J. Hum. Evol. 20:6481–92
    [Google Scholar]
  22. Bocherens H, Pacaud G, Lazarev PA, Mariotti A. 1996. Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia: implications for the palaeobiology of the Mammoth Steppe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126:1–231–44
    [Google Scholar]
  23. Bocherens H, Stiller M, Hobson KA, Pacher M, Rabeder G et al. 2011b. Niche partitioning between two sympatric genetically distinct cave bears (Ursus spelaeus and Ursus ingressus) and brown bear (Ursus arctos) from Austria: isotopic evidence from fossil bones. Quat. Int. 245:2238–48
    [Google Scholar]
  24. Bonafini M, Pellegrini M, Ditchfield P, Pollard AM 2013. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40:113926–35
    [Google Scholar]
  25. Campos PF, Kristensen T, Orlando SA, Kholodova MV, Götherström A et al. 2010. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene. Mol. Ecol. 19:224863–75
    [Google Scholar]
  26. Cooper A, Turney C, Hughen KA, Brook BW, McDonald HG, Bradshaw CJ. 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349:6248602–6
    [Google Scholar]
  27. Craine JM, Elmore AJ, Aidar MP, Bustamante M, Dawson TE et al. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:4980–92
    [Google Scholar]
  28. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. 2002. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33:507–59
    [Google Scholar]
  29. Debruyne R, Chu G, King CE, Bos K, Kuch M et al. 2008. Out of America: ancient DNA evidence for a new world origin of late Quaternary woolly mammoths. Curr. Biol. 18:171320–26
    [Google Scholar]
  30. Deines P. 1980. The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim. Cosmochim. Acta 44:7943–61
    [Google Scholar]
  31. DeSantis LRG, Feranec RS, Antón M, Lundelius EL Jr 2021. Dietary ecology of the scimitar-toothed cat Homotherium serum. Curr. Biol. 31:122674–81.e3
    [Google Scholar]
  32. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. PNAS 107:135738–43
    [Google Scholar]
  33. Dietl GP, Kidwell SM, Brenner M, Burney DA, Flessa KW et al. 2015. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43:79–103
    [Google Scholar]
  34. Drucker DG, Bocherens H, Billiou D. 2003. Evidence for shifting environmental conditions in Southwestern France from 33 000 to 15 000 years ago derived from carbon-13 and nitrogen-15 natural abundances in collagen of large herbivores. Earth Planet. Sci. Lett. 216:1–2163–73
    [Google Scholar]
  35. Drucker DG, Bocherens H, Péan S. 2014. Isotopes stables (13C, 15N) du collagène des mammouths de Mezhyrich (Epigravettien, Ukraine): implications paléoécologiques. l'Anthropologie 118:5504–17
    [Google Scholar]
  36. Drucker DG, Bridault A, Cupillard C. 2012. Environmental context of the Magdalenian settlement in the Jura Mountains using stable isotope tracking (13C, 15N, 34S) of bone collagen from reindeer (Rangifer tarandus). Quat. Int. 272:322–32
    [Google Scholar]
  37. Drucker DG, Bridault A, Hobson KA, Szuma E, Bocherens H 2008. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266:1–269–82
    [Google Scholar]
  38. Drucker DG, Kind CJ, Stephan E 2011. Chronological and ecological information on Late-glacial and early Holocene reindeer from northwest Europe using radiocarbon (14C) and stable isotope (13C, 15N) analysis of bone collagen: case study in southwestern Germany. Quat. Int. 245:2218–24
    [Google Scholar]
  39. Drucker DG, Naito YI, Péan S, Prat S, Crépin L et al. 2017. Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe. Sci. Rep. 7:16833
    [Google Scholar]
  40. Drucker DG, Rosendahl W, Van Neer W, Weber MJ, Görner I, Bocherens H 2016. Environment and subsistence in north-western Europe during the Younger Dryas: an isotopic study of the human of Rhünda (Germany). J. Archaeol. Sci. Rep. 6:690–99
    [Google Scholar]
  41. Drucker DG, Vercoutère C, Chiotti L, Nespoulet R, Crépin L et al. 2015. Tracking possible decline of woolly mammoth during the Gravettian in Dordogne (France) and the Ach Valley (Germany) using multi-isotope tracking (13C, 14C, 15N, 34S, 18O). Quat. Int. 359:304–17
    [Google Scholar]
  42. Drucker DG, Stevens RE, Germonpré M, Sablin MV, Péan S, Bocherens H 2018. Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian. Quat. Res. 90:3457–69
    [Google Scholar]
  43. Eggleston S, Schmitt J, Bereiter B, Schneider R, Fischer H. 2016. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31:3434–52
    [Google Scholar]
  44. Fellows Yates JA, Drucker DG, Reiter E, Heumos S, Welker F et al. 2017. Central European woolly mammoth population dynamics: insights from Late Pleistocene mitochondrial genomes. Sci. Rep. 7:117714
    [Google Scholar]
  45. Finstad GL, Kielland K. 2011. Landscape variation in the diet and productivity of reindeer in Alaska based on stable isotope analyses. Arct. Antarct. Alp. Res. 43:4543–54
    [Google Scholar]
  46. Fizet M, Mariotti A, Bocherens H, Lange-Badré B, Vandermeersch B et al. 1995. Effect of diet, physiology and climate on carbon and nitrogen stable isotopes of collagen in a Late Pleistocene anthropic palaeo-ecosystem: Marillac, Charente, France. J. Archaeol. Sci. 22:167–79
    [Google Scholar]
  47. Flower LO, Schreve DC 2014. An investigation of palaeodietary variability in European Pleistocene canids. Quat. Sci. Rev. 96:188–203
    [Google Scholar]
  48. Fox-Dobbs K, Bump JK, Peterson RO, Fox DL, Koch PL. 2007. Carnivore-specific stable isotope variables and variation in the foraging ecology of modern and ancient wolf populations: case studies from Isle Royale, Minnesota, and La Brea. Can. J. Zool. 85:4458–71
    [Google Scholar]
  49. Fox-Dobbs K, Leonard JA, Koch PL 2008. Pleistocene megafauna from eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 261:1–230–46
    [Google Scholar]
  50. Germonpré M, Sablin MV, Stevens RE, Hedges REM, Hofreiter M et al. 2009. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci. 36:2473–90
    [Google Scholar]
  51. Graham RW, Belmecheri S, Choy K, Culleton BJ, Davies LJ et al. 2016. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. PNAS 113:339310–14
    [Google Scholar]
  52. Graven H, Allison CE, Etheridge DM, Hammer S, Keeling RF et al. 2017. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev. 10:124405–17
    [Google Scholar]
  53. Guthrie RD. 1982. Mammals of the mammoth steppe as paleoenvironmental indicators. Paleoecology of Beringia D Moody Hopkins 307–26 New York: Academic
    [Google Scholar]
  54. Guthrie RD. 2001. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat. Sci. Rev. 20:1–3549–74
    [Google Scholar]
  55. Guthrie RD. 2004. Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island. Nature 429:6993746–50
    [Google Scholar]
  56. Guthrie RD. 2006. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441:7090207–9
    [Google Scholar]
  57. Heaton TH. 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. J. Archaeol. Sci. 26:6637–49
    [Google Scholar]
  58. Hibbert D. 1982. History of the steppe-tundra concept. Paleoecology of Beringia D Moody Hopkins 153–56 New York: Academic
    [Google Scholar]
  59. Hobbie EA, Jumpponen A, Trappe J 2005. Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:2258–68
    [Google Scholar]
  60. Hobbie EA, Macko SA, Shugart HH. 1998. Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska.. Chem. Geol. 152:1–23–11
    [Google Scholar]
  61. Högberg P. 1997. 15N natural abundance in soil-plant systems. New Phytol 137:2179–203
    [Google Scholar]
  62. Hughes KL, Whiteman JP, Newsome SD. 2018. The relationship between dietary protein content, body condition, and Δ15N in a mammalian omnivore. Oecologia 186:2357–67
    [Google Scholar]
  63. Iacumin P, Bocherens H, Huertas AD, Mariotti A, Longinelli A. 1997. A stable isotope study of fossil mammal remains from the Paglicci cave, Southern Italy. N and C as palaeoenvironmental indicators. Earth Planet. Sci. Lett. 148:1–2349–57
    [Google Scholar]
  64. Iacumin P, Di Matteo A, Nikolaev V, Kuznetsova TV 2010. Climate information from C, N and O stable isotope analyses of mammoth bones from northern Siberia. Quat. Int. 212:2206–12
    [Google Scholar]
  65. Iacumin P, Nikolaev V, Ramigni M. 2000. C and N stable isotope measurements on Eurasian fossil mammals, 40 000 to 10 000 years BP: herbivore physiologies and palaeoenvironmental reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 163:1–233–47
    [Google Scholar]
  66. Immel A, Drucker DG, Bonazzi M, Jahnke TK, Münzel SC et al. 2015. Mitochondrial genomes of giant deers suggest their late survival in Central Europe. Sci. Rep. 5:110853
    [Google Scholar]
  67. Jackson AL, Inger R, Parnell AC, Bearhop S 2011. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80:3595–602
    [Google Scholar]
  68. Jacobi RM, Higham TFG, Haesaerts P, Jadin I, Basell LS 2010. Radiocarbon chronology for the Early Gravettian of northern Europe: new AMS determinations for Maisières-Canal, Belgium. Antiquity 84:32326–40
    [Google Scholar]
  69. Johnson CN. 2009. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B 276:16672509–19
    [Google Scholar]
  70. Jürgensen J, Drucker DG, Stuart AJ, Schneider M, Buuveibaatar B, Bocherens H. 2017. Diet and habitat of the saiga antelope during the late Quaternary using stable carbon and nitrogen isotope ratios. Quat. Sci. Rev. 160:150–61
    [Google Scholar]
  71. Kahlke R-D. 1994. Die Entstehungs-, Entwicklungs- und Verbreitungsgeschichte des oberpleistozänen Mammuthus-Coelodonta-Faunenkomplexes-in Eurasien (Großsäuger). Abh. Senckenberg. Nat. Ges. 546:ES190954600
    [Google Scholar]
  72. Kahlke R-D. 2014. The origin of Eurasian mammoth faunas (Mammuthus-Coelodonta faunal complex). Quat. Sci. Rev. 96:32–49
    [Google Scholar]
  73. Kholodova MV, Milner-Gulland EJ, Easton AJ, Amgalan L, Arylov IA et al. 2006. Mitochondrial DNA variation and population structure of the critically endangered saiga antelope Saiga tatarica. Oryx 40:1103–7
    [Google Scholar]
  74. Kirillova IV, Tiunov AV, Levchenko VA, Chernova OF, Yudin VG et al. 2015. On the discovery of a cave lion from the Malyi Anyui River (Chukotka, Russia). Quat. Sci. Rev. 117:135–51
    [Google Scholar]
  75. Koch PL, Barnosky AD. 2006. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37:215–50
    [Google Scholar]
  76. Kohn MJ. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. PNAS 107:4619691–95
    [Google Scholar]
  77. Körner C, Farquhar GD, Wong SC. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:130–40
    [Google Scholar]
  78. Krajcarz M, Pacher M, Krajcarz MT, Laughlan L, Rabeder G et al. 2016. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3. Quat. Sci. Rev. 131:51–72
    [Google Scholar]
  79. Krajcarz MT, Krajcarz M, Bocherens H. 2018. Collagen-to-collagen prey-predator isotopic enrichment (Δ13C, Δ15N) in terrestrial mammals—a case study of a subfossil red fox den. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490:563–70
    [Google Scholar]
  80. Kristensen DK, Kristensen E, Forchhammer MC, Michelsen A, Schmidt NM. 2011. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool. Can. J. Zool. 89:10892–99
    [Google Scholar]
  81. Kuitems M, van Kolfschoten T, Tikhonov AN, van der Plicht J. 2019. Woolly mammoth δ13C and δ15N values remained amazingly stable throughout the last ∼50,000 years in north-eastern Siberia. Quat. Int. 500:120–27
    [Google Scholar]
  82. Kuitems M, van der Plicht J, Drucker DG, van Kolfschoten T, Palstra SW, Bocherens H 2015a. Carbon and nitrogen stable isotopes of well-preserved Middle Pleistocene bone collagen from Schöningen (Germany) and their paleoecological implications. J. Hum. Evol. 89:105–13
    [Google Scholar]
  83. Kuitems M, van Kolfschoten T, van der Plicht J. 2015b. Elevated δ15N values in mammoths: a comparison with modern elephants. Archaeol. Anthropol. Sci. 7:3289–95
    [Google Scholar]
  84. Landry Z, Kim S, Trayler RB, Gilbert M, Zazula G et al. 2021. Dietary reconstruction and evidence of prey shifting in Pleistocene and recent gray wolves (Canis lupus) from Yukon Territory. Palaeogeogr. Palaeoclimatol. Palaeoecol. 571:110368
    [Google Scholar]
  85. Lee-Thorp JA, Sealy JC, van der Merwe NJ. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16:6585–99
    [Google Scholar]
  86. Leonard JA, Vilà C, Fox-Dobbs K, Koch PL, Wayne RK, Van Valkenburgh B 2007. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol. 17:131146–50
    [Google Scholar]
  87. Lister AM 2001. Age profile of mammoths in a late Pleistocene hyaena den at Kent's Cavern, Devon, England. Proceedings of the International Conference on Mammoth Site Studies, Publications in Anthropology, Vol. 22 DL West 35–43 Lawrence, KS: Univ. Kansas
    [Google Scholar]
  88. Long ES, Sweitzer RA, Diefenbach DR, Ben-David M. 2005. Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies. Oecologia 146:1148–56
    [Google Scholar]
  89. Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J et al. 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:7373359–64
    [Google Scholar]
  90. Lushchekina A, Struchkov A. 2001. The saiga antelope in Europe: once again on the brink?. Arctic 60:11–24
    [Google Scholar]
  91. Ma J, Fengli Z, Yuan W, Yaowu H. 2017. Tracking the foraging behavior of Mammuthus primigenius from the late Pleistocene of northeast China, using stable isotope analysis. Quat. Sci. 37:4885–94
    [Google Scholar]
  92. Ma J, Wang Y, Baryshnikov GF, Drucker DG, McGrath K et al. 2021. The Mammuthus-Coelodonta Faunal Complex at its southeastern limit: a biogeochemical paleoecology investigation in Northeast Asia. Quat. Int. 591:93–106
    [Google Scholar]
  93. Mann DH, Groves P, Kunz ML, Reanier RE, Gaglioti BV. 2013. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70:91–108
    [Google Scholar]
  94. Marean CW, Ehrhardt CL. 1995. Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth's den. J. Hum. Evol. 29:6515–47
    [Google Scholar]
  95. McLeman C. 2006. Determining the relationships between forage use, climate and nutritional status of barren ground caribou, Rangifer tarandus groenlandicus, on Southampton Island, Nunavut, using stable isotopes analysis of δ13C and δ15N Master Diss., Univ. Waterloo Ont., Can:.
    [Google Scholar]
  96. Metcalfe JZ. 2011. Late Pleistocene climate and proboscidean paleoecology in North America: insights from stable isotope compositions of skeletal remains. PhD Diss., Univ. West. Ont., London, Ont. Can:.
  97. Metcalfe JZ, Longstaffe FJ, Hodgins G. 2013. Proboscideans and paleoenvironments of the Pleistocene Great Lakes: landscape, vegetation, and stable isotopes. Quat. Sci. Rev. 76:102–13
    [Google Scholar]
  98. Metcalfe JZ, Longstaffe FJ, Zazula GD. 2010. Nursing, weaning, and tooth development in woolly mammoths from Old Crow, Yukon, Canada: implications for Pleistocene extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298:3–4257–70
    [Google Scholar]
  99. Michelsen A, Quarmby C, Sleep D, Jonasson S. 1998. Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:3406–18
    [Google Scholar]
  100. Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D. 1996. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:153–63
    [Google Scholar]
  101. Minagawa M, Wada E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48:51135–40
    [Google Scholar]
  102. Munizzi JS. 2017. Rethinking Holocene ecological relationships among caribou, muskoxen, and human hunters on Banks Island, NWT, Canada: a stable isotope approach. PhD Diss., Univ. West. Ont., London, Ont. Can:.
  103. Münzel SC, Wolf S, Drucker DG, Conard NJ. 2017. The exploitation of mammoth in the Swabian Jura (SW-Germany) during the Aurignacian and Gravettian period. Quat. Int. 445:184–99
    [Google Scholar]
  104. Nadachowski A, Lipecki G, Ratajczak U, Stefaniak K, Wojtal P. 2016. Dispersal events of the saiga antelope (Saiga tatarica) in Central Europe in response to the climatic fluctuations in MIS 2 and the early part of MIS 1. Quat. Int. 420:357–62
    [Google Scholar]
  105. Naito YI, Meleg IN, Robu M, Vlaicu M, Drucker DG et al. 2020. Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis. Sci. Rep. 10:16612
    [Google Scholar]
  106. Nelson DE, Angerbjörn A, Lidén K, Turk I. 1998. Stable isotopes and the metabolism of the European cave bear. Oecologia 116:1–2177–81
    [Google Scholar]
  107. O'Leary MH. 1981. Carbon isotope fractionation in plants. Phytochemistry 20:4553–67
    [Google Scholar]
  108. O'Leary MH. 1988. Carbon isotopes in photosynthesis. Bioscience 38:5328–36
    [Google Scholar]
  109. Paijmans JL, Barnett R, Gilbert MTP, Zepeda-Mendoza ML, Reumer JW et al. 2017. Evolutionary history of saber-toothed cats based on ancient mitogenomics. Curr. Biol. 27:213330–36
    [Google Scholar]
  110. Raghavan M, Themudo GE, Smith CI, Zazula G, Campos PF. 2014. Musk ox (Ovibos moschatus) of the mammoth steppe: tracing palaeodietary and palaeoenvironmental changes over the last 50,000 years using carbon and nitrogen isotopic analysis. Quat. Sci. Rev. 102:192–201
    [Google Scholar]
  111. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106:14–28
    [Google Scholar]
  112. Reade H, Grimm SB, Tripp JA, Neruda P, Nerudová Z et al. 2021. Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic. Archaeol. Anthropol. Sci. 13:14
    [Google Scholar]
  113. Rey-Iglesia A, Lister AM, Stuart AJ, Bocherens H, Szpak P et al. 2021. Late Pleistocene paleoecology and phylogeography of woolly rhinoceroses. Quat. Sci. Rev. 263:106993
    [Google Scholar]
  114. Richards MP, Hedges REM. 2003. Variations in bone collagen δ13C and δ15N values of fauna from Northwest Europe over the last 40 000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193:2261–67
    [Google Scholar]
  115. Richards MP, Pacher M, Stiller M, Quilès J, Hofreiter M et al. 2008. Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. PNAS 105:2600–4
    [Google Scholar]
  116. Rivals F, Mihlbachler MC, Solounias N, Mol D, Semprebon GM et al. 2010. Palaeoecology of the Mammoth Steppe fauna from the late Pleistocene of the North Sea and Alaska: separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286:1–242–54
    [Google Scholar]
  117. Robu M, Fortin JK, Richards MP, Schwartz CC, Wynn JG et al. 2013. Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can. J. Zool. 91:4227–34
    [Google Scholar]
  118. Rodière E, Bocherens H, Angibault JM, Mariotti A. 1996. Particularités isotopiques de l'azote chez le chevreuil (Capreolus capreolus L.): implications pour les reconstitutions paléoenvironnementales. C. R. Acad. Sci. 323:2179–85
    [Google Scholar]
  119. Sanchez Goñi MF, Harrison SP. 2010. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quat. Sci. Rev. 29:21–222823–27
    [Google Scholar]
  120. Schwartz-Narbonne R, Longstaffe FJ, Kardynal KJ, Druckenmiller P, Hobson KA et al. 2019. Reframing the mammoth steppe: insights from analysis of isotopic niches. Quat. Sci. Rev. 215:1–21
    [Google Scholar]
  121. Schwartz-Narbonne R, Longstaffe FJ, Metcalfe JZ, Zazula G. 2015. Solving the woolly mammoth conundrum: amino acid 15N-enrichment suggests a distinct forage or habitat. Sci. Rep. 5:19791
    [Google Scholar]
  122. Schweger CE. 1982. Late Pleistocene vegetation of eastern Beringia: pollen analysis of dated alluvium. Paleoecology of Beringia D Moody Hopkins 95–112 New York: Academic
    [Google Scholar]
  123. Stefaniak K, Stachowicz-Rybka R, Borówka RK, Hrynowiecka A, Sobczyk A et al. 2021. Browsers, grazers or mix-feeders? Study of the diet of extinct Pleistocene Eurasian forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) and woolly rhinoceros Coelodonta antiquitatis (Blumenbach, 1799). Quat. Int. 605:192–212
    [Google Scholar]
  124. Stevens RE, Hedges REM. 2004. Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen, 40,000 BP-present: palaeoclimatic interpretations. Quat. Sci. Rev. 23:7–8977–91
    [Google Scholar]
  125. Stevens RE, Jacobi R, Street M, Germonpré M, Conard NJ et al. 2008. Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: palaeoenvironmental reconstructions Palaeogeogr. Palaeoclimatol. Palaeoecol. 262:1–232–45
    [Google Scholar]
  126. Stiner MC. 2004. Comparative ecology and taphonomy of spotted hyenas, humans, and wolves in Pleistocene Italy. Rev. Paléobiol. 23:2771–85
    [Google Scholar]
  127. Stuart AJ. 2015. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50:3338–63
    [Google Scholar]
  128. Stuart AJ, Lister AM. 2012. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51:1–17
    [Google Scholar]
  129. Suttie JM, Webster JR. 1998. Are arctic ungulates physiologically unique?. Rangifer 18:3–499–118
    [Google Scholar]
  130. Szpak P, Gröcke DR, Debruyne R, MacPhee RD, Guthrie RD et al. 2010. Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286:1–288–96
    [Google Scholar]
  131. Terlato G, Bocherens H, Romandini M, Nannini N, Hobson KA, Peresani M. 2019. Chronological and isotopic data support a revision for the timing of cave bear extinction in Mediterranean Europe. Hist. Biol. 31:4474–84
    [Google Scholar]
  132. Tieszen LL. 1991. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18:3227–48
    [Google Scholar]
  133. Tiunov AV, Kirillova IV. 2010. Stable isotope (13C/12C and 15N/14N) composition of the woolly rhinoceros Coelodonta antiquitatis horn suggests seasonal changes in the diet. Rapid Commun. Mass Spectrom. 24:213146–50
    [Google Scholar]
  134. van der Merwe NJ. 1989. Natural variation in 13C concentration and its effect on environmental reconstruction using 13C/12C ratios in animal bones. The Chemistry of Prehistoric Human Bone TD Price 105–25 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  135. van der Merwe NJ, Medina E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18:3249–59
    [Google Scholar]
  136. Vartanyan SL, Arslanov KA, Karhu JA, Possnert G, Sulerzhitsky LD 2008. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quat. Res. 70:151–59
    [Google Scholar]
  137. Veltre DW, Yesner DR, Crossen KJ, Graham RW, Coltrain JB 2008. Patterns of faunal extinction and paleoclimatic change from mid-Holocene mammoth and polar bear remains, Pribilof Islands, Alaska. Quat. Res. 70:140–50
    [Google Scholar]
  138. Vereshchagin NK, Baryshnikov GF. 1991. The ecological structure of the “Mammoth Fauna” in Eurasia. Ann. Zool. Fenn. 28:253–59
    [Google Scholar]
  139. Vila Taboada M, Fernández Mosquera D, López González F, Grandal-d'Anglade A, Vidal Romaní JR 1999. Paleoecological implications inferred from stable isotopic signatures (δ13C, δ15N) in bone collagen of Ursus spelaeus ROS.-HEIN. Cad. Lab. Xeol. Laxe Coruña 24:73–87
    [Google Scholar]
  140. Wang Y, Wooller MJ. 2006. The stable isotopic (C and N) composition of modern plants and lichens from northern Iceland: with ecological and paleoenvironmental implications. Jökull 56:27–38
    [Google Scholar]
  141. Willerslev E, Davison J, Moora M, Zobel M, Coissac E et al. 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:748647–51
    [Google Scholar]
  142. Wißing C, Matzerath S, Turner E, Bocherens H 2015. Paleoecological and climatic implications of stable isotope results from late Pleistocene bone collagen, Ziegeleigrube Coenen, Germany. Quat. Res. 84:196–105
    [Google Scholar]
  143. Wißing C, Rougier H, Baumann C, Comeyne A, Crevecoeur I et al. 2019. Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Sci. Rep. 9:14433
    [Google Scholar]
  144. Wong GL, Drucker DG, Starkovich BM, Conard NJ. 2020a. Latest Pleistocene paleoenvironmental reconstructions from the Swabian Jura, southwestern Germany: evidence from stable isotope analysis and micromammal remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540:109527
    [Google Scholar]
  145. Wong GL, Starkovich BM, Drucker DG, Conard NJ. 2020b. New perspectives on human subsistence during the Magdalenian in the Swabian Jura, Germany. Archaeol. Anthropol. Sci. 12:9217
    [Google Scholar]
  146. Yeakel JD, Guimarães PR Jr., Bocherens H, Koch PL. 2013. The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proc. R. Soc. B 280:176220130239
    [Google Scholar]
  147. Yurtsev BA. 2001. The Pleistocene “tundra-steppe” and the productivity paradox: the landscape approach. Quat. Sci. Rev. 20:1–3165–74
    [Google Scholar]
  148. Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS III, Reynolds JF, Chapin MC. 1995. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146:5765–94
    [Google Scholar]
  149. Zimov SA, Zimov NS, Chapin FS. 2012. The past and future of the mammoth steppe ecosystem. Paleontology in Ecology and Conservation J Louys 193–25 Berlin: Springer-Verlag
    [Google Scholar]
/content/journals/10.1146/annurev-earth-100821-081832
Loading
/content/journals/10.1146/annurev-earth-100821-081832
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error