1932

Abstract

The response of the terrestrial biosphere to warming remains one of the most poorly understood and quantified aspects of the climate system. One way to test the behavior of the Earth system in warm climate states is to examine the geological record. The abundance, distribution, and/or isotopic composition of source-specific organic molecules (biomarkers) have been used to reconstruct terrestrial paleoenvironmental change over a range of geological timescales. Here, we review new or recently improved biomarker approaches for reconstructing () physical climate variables (land temperature, rainfall), () ecosystem state variables (vegetation, fire regime), and () biogeochemical variables (soil residence time, methane cycling). This review encompasses a range of key compound classes (e.g., lipids, lignin, and carbohydrates). In each section, we explore the concept behind key biomarker approaches and discuss their successesas paleoenvironmental indicators. We emphasize that analyzing several biomarkers in tandem can provide unique insights into the Earth system.

  • ▪  Biomarkers can be used to reconstruct terrestrial environmental change over a range of geological timescales.
  • ▪  A multi-proxy biomarker approach provides novel insights into climate and the environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-095943
2022-05-31
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-095943.html?itemId=/content/journals/10.1146/annurev-earth-032320-095943&mimeType=html&fmt=ahah

Literature Cited

  1. Anhäuser T, Hook BA, Halfar J, Greule M, Keppler F 2018. Earliest Eocene cold period and polar amplification—insights from δ2H values of lignin methoxyl groups of mummified wood. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505:326–36
    [Google Scholar]
  2. Balascio NL, D'Andrea WJ, Anderson RS, Wickler S 2018. Influence of vegetation type on n-alkane composition and hydrogen isotope values from a high latitude ombrotrophic bog. Org. Geochem. 121:48–57
    [Google Scholar]
  3. Bauersachs T, Weidenbach K, Schmitz RA, Schwark L. 2015. Distribution of glycerol ether lipids in halophilic, methanogenic and hyperthermophilic archaea. Org. Geochem. 83:101–8
    [Google Scholar]
  4. Becker KW, Elling FJ, Yoshinaga MY, Söllinger A, Urich T, Hinrichs K-U. 2016. Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens. Appl. Environ. Microbiol. 82:4505–16
    [Google Scholar]
  5. Becker KW, Lipp JS, Zhu C, Liu X-L, Hinrichs K-U. 2013. An improved method for the analysis of archaeal and bacterial ether core lipids. Org. Geochem. 61:34–44
    [Google Scholar]
  6. Bhattacharya T, Tierney JE, Addison JA, Murray JW. 2018. Ice-sheet modulation of deglacial North American monsoon intensification. Nat. Geosci. 11:848–52
    [Google Scholar]
  7. Bianchi TS, Filley T, Dria K, Hatcher PG 2004. Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta 68:959–67
    [Google Scholar]
  8. Blaga CI, Reichart G-J, Heiri O, Sinninghe Damsté JS. 2009. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J. Paleolimnol. 41:523–40
    [Google Scholar]
  9. Blewett J, Naafs B, Gallego-Sala A, Pancost RD. 2020. Effects of temperature and pH on archaeal membrane lipid distributions in freshwater wetlands. Org. Geochem. 148:104080
    [Google Scholar]
  10. Bush RT, McInerney FA. 2013. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117:161–79
    [Google Scholar]
  11. Cerling TE. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71:229–40
    [Google Scholar]
  12. Cerling TE, Wynn JG, Andanje SA, Bird MI, Korir DK et al. 2011. Woody cover and hominin environments in the past 6 million years. Nature 476:51–56
    [Google Scholar]
  13. Chen Y, Zheng F, Chen S, Liu H, Phelps TJ, Zhang C. 2018. Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations. Org. Geochem. 117:12–21
    [Google Scholar]
  14. Coffinet S, Huguet A, Williamson D, Fosse C, Derenne S 2014. Potential of GDGTs as a temperature proxy along an altitudinal transect at Mount Rungwe (Tanzania). Org. Geochem. 68:82–89
    [Google Scholar]
  15. Collister JW, Summons RE, Lichtfouse E, Hayes JM 1992. An isotopic biogeochemical study of the Green River oil shale. Org. Geochem. 19:265–76
    [Google Scholar]
  16. Conte MH, Weber JC. 2002. Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis. Nature 417:639–41
    [Google Scholar]
  17. Coppola AI, Wiedemeier DB, Galy V, Haghipour N, Hanke UM et al. 2018. Global-scale evidence for the refractory nature of riverine black carbon. Nat. Geosci. 11:584–88
    [Google Scholar]
  18. Crampton-Flood ED, Peterse F, Munsterman D, Sinninghe Damsté JS. 2018. Using tetraether lipids archived in North Sea Basin sediments to extract North Western European Pliocene continental air temperatures. Earth Planet. Sci. Lett. 490:193–205
    [Google Scholar]
  19. Crampton-Flood ED, Tierney JE, Peterse F, Kirkels FM, Sinninghe Damsté JS. 2020. BayMBT: a Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats. Geochim. Cosmochim. Acta 268:142–59
    [Google Scholar]
  20. Dang X, Yang H, Naafs BDA, Pancost RD, Xie S. 2016. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils. Geochim. Cosmochim. Acta 189:24–36
    [Google Scholar]
  21. Daniels WC, Russell JM, Giblin AE, Welker JM, Klein ES, Huang Y. 2017. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra. Geochim. Cosmochim. Acta 213:216–36
    [Google Scholar]
  22. De Jonge C, Hopmans EC, Stadnitskaia A, Rijpstra WIC, Hofland R et al. 2013. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS. Org. Geochem. 54:78–82
    [Google Scholar]
  23. De Jonge C, Hopmans EC, Zell CI, Kim J-H, Schouten S, Sinninghe Damsté JS. 2014. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141:97–112
    [Google Scholar]
  24. De Jonge C, Stadnitskaia A, Hopmans EC, Cherkashov G, Fedotov A et al. 2015. Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): implications for the use of brGDGT-based proxies in coastal marine sediments. Geochim. Cosmochim. Acta 165:200–25
    [Google Scholar]
  25. De Rosa M, Esposito E, Gambacorta A, Nicolaus B, Bu'Lock JD. 1980. Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry 19:827–31
    [Google Scholar]
  26. Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG et al. 2018. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56:207–50
    [Google Scholar]
  27. Diefendorf AF, Freeman KH, Wing SL. 2012. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance. Geochim. Cosmochim. Acta 85:342–56
    [Google Scholar]
  28. Diefendorf AF, Freeman KH, Wing SL. 2014. A comparison of terpenoid and leaf fossil vegetation proxies in Paleocene and Eocene Bighorn Basin sediments. Org. Geochem. 71:30–42
    [Google Scholar]
  29. Diefendorf AF, Freeman KH, Wing SL, Graham HV. 2011. Production of n-alkyl lipids in living plants and implications for the geologic past. Geochim. Cosmochim. Acta 75:7472–85
    [Google Scholar]
  30. Diefendorf AF, Freimuth EJ. 2017. Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org. Geochem. 103:1–21
    [Google Scholar]
  31. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. PNAS 107:135738–43
    [Google Scholar]
  32. Diefendorf AF, Sberna DT, Taylor DW. 2015. Effect of thermal maturation on plant-derived terpenoids and leaf wax n-alkyl components. Org. Geochem. 89:61–70
    [Google Scholar]
  33. Denis EH, Toney JL, Tarozo R, Anderson RS, Roach LD, Huang Y. 2012. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: validation using HPLC-fluorescence detection. Org. Geochem. 45:7–17
    [Google Scholar]
  34. Eglinton G, Hamilton RJ. 1967. Leaf epicuticular waxes. Science 156:1322–35
    [Google Scholar]
  35. Eglinton TI, Eglinton G, Dupont L, Sholkovitz ER, Montluçon D, Reddy CM 2002. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem. Geophys. Geosyst. 3:1–27
    [Google Scholar]
  36. Eglinton TI, Galy VV, Hemingway JD, Feng X, Bao H et al. 2021. Climate control on terrestrial biospheric carbon turnover. PNAS 118:e2011585118
    [Google Scholar]
  37. Elvert M, Pohlman JW, Becker KW, Gaglioti B, Hinrichs K-U, Wooller MJ. 2016. Methane turnover and environmental change from Holocene lipid biomarker records in a thermokarst lake in Arctic Alaska. Holocene 26:1766–77
    [Google Scholar]
  38. Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C. 2017. Hydrologic regulation of plant rooting depth. PNAS 114:10572–77
    [Google Scholar]
  39. Feakins SJ. 2013. Pollen-corrected leaf wax D/H reconstructions of northeast African hydrological changes during the late Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374:62–71
    [Google Scholar]
  40. Feakins SJ, Bentley LP, Salinas N, Shenkin A, Blonder B et al. 2016a. Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochim. Cosmochim. Acta 182:155–72
    [Google Scholar]
  41. Feakins SJ, Ellsworth PV, Sternberg LSL. 2013. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem. Geochim. Cosmochim. Acta 121:54–66
    [Google Scholar]
  42. Feakins SJ, Liddy HM, Tauxe L, Galy V, Feng X et al. 2020. Miocene C4 grassland expansion as recorded by the Indus Fan. Paleoceanogr. Paleoclimatol. 35:6e2020PA003856
    [Google Scholar]
  43. Feakins SJ, Peters T, Wu MS, Shenkin A, Salinas N et al. 2016b. Production of leaf wax n-alkanes across a tropical forest elevation transect. Org. Geochem. 100:89–100
    [Google Scholar]
  44. Feakins SJ, Sessions AL. 2010. Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochim. Cosmochim. Acta 74:2128–41
    [Google Scholar]
  45. Feakins SJ, Wu MS, Ponton C, Galy V, West AJ 2018. Dual isotope evidence for sedimentary integration of plant wax biomarkers across an Andes-Amazon elevation transect. Geochim. Cosmochim. Acta 242:64–81
    [Google Scholar]
  46. Feng X, Vonk JE, van Dongen BE, Gustafsson Ö, Semiletov IP et al. 2013. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. PNAS 110:14168–73
    [Google Scholar]
  47. Fornace KL. 2016. Late Quaternary climate variability and terrestrial carbon cycling in tropical South America PhD Diss., Mass. Inst. Technol. Cambridge, MA:
  48. Fornace KL, Hughen KA, Shanahan TM, Fritz SC, Baker PA, Sylva SP. 2014. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth Planet. Sci. Lett. 408:263–71
    [Google Scholar]
  49. Freeman KH, Colarusso L. 2001. Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochim. Cosmochim. Acta 65:1439–54
    [Google Scholar]
  50. Freeman KH, Hayes J, Trendel J-M, Albrecht P 1990. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–56
    [Google Scholar]
  51. French KL, Hein CJ, Haghipour N, Wacker L, Kudrass HR et al. 2018. Millennial soil retention of terrestrial organic matter deposited in the Bengal Fan. Sci. Rep. 8:11997
    [Google Scholar]
  52. Gamarra B, Sachse D, Kahmen A. 2016. Effects of leaf water evaporative 2H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ2H values in C3 and C4 grasses. Plant Cell Environ. 39:2390–403
    [Google Scholar]
  53. Gao L, Edwards EJ, Zeng Y, Huang Y. 2014. Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes. PLOS ONE 9:e112610
    [Google Scholar]
  54. Gao L, Hou J, Toney J, MacDonald D, Huang Y. 2011. Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: implications for interpreting compound specific hydrogen isotopic records. Geochim. Cosmochim. Acta 75:3781–91
    [Google Scholar]
  55. Garcin Y, Schefuß E, Schwab VF, Garreta V, Gleixner G et al. 2014. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142:482–500
    [Google Scholar]
  56. Garcin Y, Schwab VF, Gleixner G, Kahmen A, Todou G et al. 2012. Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: insights from a calibration transect across Cameroon. Geochim. Cosmochim. Acta 79:106–26
    [Google Scholar]
  57. Glaser B, Haumaier L, Guggenberger G, Zech W. 1998. Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org. Geochem. 29:811–19
    [Google Scholar]
  58. Goñi MA, Ruttenberg KC, Eglinton TI. 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389:275–78
    [Google Scholar]
  59. Greule M, Mosandl A, Hamilton JT, Keppler F. 2008. A rapid and precise method for determination of D/H ratios of plant methoxyl groups. Rapid Commun. Mass Spectrom. 22:3983–88
    [Google Scholar]
  60. Griepentrog M, De Wispelaere L, Bauters M, Bodé S, Hemp A et al. 2019. Influence of plant growth form, habitat and season on leaf-wax n-alkane hydrogen-isotopic signatures in equatorial East Africa. Geochim. Cosmochim. Acta 263:122–39
    [Google Scholar]
  61. Halamka TA, McFarlin J, Younkin AD, Depoy J, Dildar N, Kopf SH 2021. Oxygen limitation can trigger the production of branched GDGTs in culture. Geochem. Perspect. 19:36–39
    [Google Scholar]
  62. Hanke UM, Eglinton TI, Braun AL, Reddy CM, Wiedemeier DB, Schmidt MW. 2016. Decoupled sedimentary records of combustion: causes and implications. Geophys. Res. Lett. 43:5098–108
    [Google Scholar]
  63. Hayes JJ. 1993. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar. Geol. 113:111–25
    [Google Scholar]
  64. Hedges JI, Mann DC. 1979. The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta 43:1803–7
    [Google Scholar]
  65. Hein CJ, Usman M, Eglinton TI, Haghipour N, Galy VV. 2020. Millennial-scale hydroclimate control of tropical soil carbon storage. Nature 581:63–66
    [Google Scholar]
  66. Hemingway JD, Schefuß E, Dinga BJ, Pryer H, Galy VV. 2016. Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments. Geochim. Cosmochim. Acta 184:20–40
    [Google Scholar]
  67. Hilton RG, West AJ. 2020. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1:284–99
    [Google Scholar]
  68. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF. 1999. Methane-consuming archaebacteria in marine sediments. Nature 398:802–5
    [Google Scholar]
  69. Hinrichs K-U, Pancost RD, Summons RE, Sprott GD, Sylva SP et al. 2000. Mass spectra of sn-2-hydroxyarchaeol, a polar lipid biomarker for anaerobic methanotrophy. Geochem. Geophys. Geosyst. 1: https://doi.org/10.1029/2000GC000042
    [Crossref] [Google Scholar]
  70. Hollis CJ, Naeher S, Clowes CD, Dahl J, Li X et al. 2021. Late Paleocene CO2 drawdown, climatic cooling, and terrestrial denudation in the southwest Pacific. Clim. Past Discuss. 2021:1–32 https://doi.org/10.5194/cp-2021-122
    [Crossref] [Google Scholar]
  71. Hopmans EC, Schouten S, Sinninghe Damsté JS. 2016. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93:1–6
    [Google Scholar]
  72. Hopmans EC, Weijers JW, Schefuß E, Herfort L, Sinninghe Damsté JS, Schouten S 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224:107–16
    [Google Scholar]
  73. Huang Y, Street-Perrott FA, Metcalfe SE, Brenner M, Moreland M, Freeman KH. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293:1647–51
    [Google Scholar]
  74. Inglis GN, Carmichael MJ, Farnsworth A, Lunt DJ, Pancost RD. 2020. A long-term, high-latitude record of Eocene hydrological change in the Greenland region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 537:109378
    [Google Scholar]
  75. Inglis GN, Farnsworth A, Collinson ME, Carmichael MJ, Naafs BDA et al. 2019a. Terrestrial environmental change across the onset of the PETM and the associated impact on biomarker proxies: a cautionary tale. Global Planet. Change 181:102991
    [Google Scholar]
  76. Inglis GN, Naafs BDA, Zheng Y, Schellekens J, Pancost RD 2019b. δ13C values of bacterial hopanoids and leaf waxes as tracers for methanotrophy in peatlands. Geochim. Cosmochim. Acta 260:244–56
    [Google Scholar]
  77. Inglis GN, Rohrssen M, Kennedy EM, Crouch EM, Raine JI et al. 2021. Terrestrial methane cycle perturbations during the onset of the Paleocene-Eocene Thermal Maximum. Geology 49:520–24
    [Google Scholar]
  78. Kahmen A, Hoffmann B, Schefuß E, Arndt SK, Cernusak LA et al. 2013a. Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants II: observational evidence and global implications. Geochim. Cosmochim. Acta 111:50–63
    [Google Scholar]
  79. Kahmen A, Schefuß E, Sachse D. 2013b. Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants I: experimental evidence and mechanistic insights. Geochim. Cosmochim. Acta 111:39–49
    [Google Scholar]
  80. Karp AT, Behrensmeyer AK, Freeman KH. 2018. Grassland fire ecology has roots in the late Miocene. PNAS 115:12130–35
    [Google Scholar]
  81. Karp AT, Holman AI, Hopper P, Grice K, Freeman KH. 2020. Fire distinguishers: refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications. Geochim. Cosmochim. Acta 289:93–113
    [Google Scholar]
  82. Karp AT, Uno KT, Polissar PJ, Freeman KH. 2021. Late Miocene C4 grassland fire feedbacks on the Indian subcontinent. Paleoceanogr. Paleoclimatol. 36:e2020PA004106
    [Google Scholar]
  83. Kaufman D, McKay N, Routson C, Erb M, Davis B et al. 2020. A global database of Holocene paleotemperature records. Sci. Data 7:115
    [Google Scholar]
  84. Keppler F, Harper DB, Kalin RM, Meier-Augenstein W, Farmer N et al. 2007. Stable hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of wood. New Phytol. 176:600–9
    [Google Scholar]
  85. Kirkels FM, Ponton C, Galy V, West AJ, Feakins SJ, Peterse F. 2020. From Andes to Amazon: assessing branched tetraether lipids as tracers for soil organic carbon in the Madre de Dios River system. J. Geophys. Res. Biogeosci. 125:e2019JG005270
    [Google Scholar]
  86. Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M. 1993. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol. Rev. 57:164–82
    [Google Scholar]
  87. Konecky B, Noone D, Cobb K. 2019. The influence of competing hydroclimate processes on stable isotope ratios in tropical rainfall. Geophys. Res. Lett. 46:1622–33
    [Google Scholar]
  88. Kusch S, Rethemeyer J, Schefuß E, Mollenhauer G 2010. Controls on the age of vascular plant biomarkers in Black Sea sediments. Geochim. Cosmochim. Acta 74:7031–47
    [Google Scholar]
  89. Lee H, Feng X, Mastalerz M, Feakins SJ. 2019a. Characterizing lignin: combining lignin phenol, methoxy quantification, and dual stable carbon and hydrogen isotopic techniques. Org. Geochem. 136:103894
    [Google Scholar]
  90. Lee H, Galy V, Feng X, Ponton C, Galy A et al. 2019b. Sustained wood burial in the Bengal Fan over the last 19 My. PNAS 116:22518–25
    [Google Scholar]
  91. Lee JE, Fung I, DePaolo DJ, Henning CC. 2007. Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J. Geophys. Res. 112:D16D16306
    [Google Scholar]
  92. Luo Y. 2007. Terrestrial carbon–cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38:683–712
    [Google Scholar]
  93. Lyons SL, Karp AT, Bralower TJ, Grice K, Schaefer B et al. 2020. Organic matter from the Chicxulub crater exacerbated the K–Pg impact winter. PNAS 117:25327–334
    [Google Scholar]
  94. Magill CR, Ashley GM, Freeman KH. 2013. Ecosystem variability and early human habitats in eastern Africa. PNAS 110:1167–74
    [Google Scholar]
  95. Martínez-Sosa P, Tierney JE, Meredith LK 2020. Controlled lacustrine microcosms show a brGDGT response to environmental perturbations. Org. Geochem. 145:104041
    [Google Scholar]
  96. Martínez-Sosa P, Tierney JE, Stefanescu IC, Crampton-Flood ED, Shuman BN, Routson C. 2021. A global Bayesian temperature calibration for lacustrine brGDGTs. Geochim. Cosmochim. Acta 305:87–105
    [Google Scholar]
  97. McCartney C, Bull I, Yan T, Dewhurst R 2013. Assessment of archaeol as a molecular proxy for methane production in cattle. J. Dairy Sci. 96:1211–17
    [Google Scholar]
  98. Mügler I, Sachse D, Werner M, Xu B, Wu G et al. 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: a comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org. Geochem. 39:711–29
    [Google Scholar]
  99. Naafs BDA, Inglis GN, Zheng Y, Amesbury M, Biester H et al. 2017. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochim. Cosmochim. Acta 208:285–301
    [Google Scholar]
  100. Naafs BDA, Rohrssen M, Inglis G, Lähteenoja O, Feakins S et al. 2018. High temperatures in the terrestrial mid-latitudes during the early Palaeogene. Nat. Geosci. 11:766–71
    [Google Scholar]
  101. Naeher S, Niemann H, Peterse F, Smittenberg RH, Zigah PK, Schubert CJ. 2014. Tracing the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland). Org. Geochem. 66:174–81
    [Google Scholar]
  102. Nott CJ, Xie S, Avsejs LA, Maddy D, Chambers FM, Evershed RP 2000. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Org. Geochem. 31:231–35
    [Google Scholar]
  103. Otto A, Simoneit BR 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochim. Cosmochim. Acta 65:3505–27
    [Google Scholar]
  104. Pagani M, Freeman KH, Arthur MA 2000. Isotope analyses of molecular and total organic carbon from Miocene sediments. Geochim. Cosmochim. Acta 64:37–49
    [Google Scholar]
  105. Pancost RD, McClymont EL, Bingham EM, Roberts Z, Charman DJ et al. 2011. Archaeol as a methanogen biomarker in ombrotrophic bogs. Org. Geochem. 42:1279–87
    [Google Scholar]
  106. Pancost RD, Sinninghe Damsté JS. 2003. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem. Geol. 195:29–58
    [Google Scholar]
  107. Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJ, Gottschal JC 2000. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl. Environ. Microbiol. 66:1126–32
    [Google Scholar]
  108. Pancost RD, Steart DS, Handley L, Collinson ME, Hooker JJ et al. 2007. Increased terrestrial methane cycling at the Palaeocene–Eocene thermal maximum. Nature 449:332–35
    [Google Scholar]
  109. Peaple MD, Tierney JE, McGee D, Lowenstein TK, Bhattacharya T, Feakins SJ. 2021. Identifying plant wax inputs in lake sediments using machine learning. Org. Geochem. 156:104222
    [Google Scholar]
  110. Polissar PJ, Freeman KH. 2010. Effects of aridity and vegetation on plant-wax δD in modern lake sediments. Geochim. Cosmochim. Acta 74:5785–97
    [Google Scholar]
  111. Polissar PJ, Rose C, Uno KT, Phelps SR, deMenocal P 2019. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12:657–60
    [Google Scholar]
  112. Polissar PJ, Uno KT, Phelps SR, Karp AT, Freeman KH, Pensky JL. 2021. Hydrologic changes drove the late Miocene expansion of C4 grasslands on the northern Indian subcontinent. Paleoceanogr. Paleoclimatol. 36:e2020PA004108
    [Google Scholar]
  113. Powers LA, Werne JP, Johnson TC, Hopmans EC, Sinninghe Damsté JS, Schouten S 2004. Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction?. Geology 32:613–16
    [Google Scholar]
  114. Rach O, Brauer A, Wilkes H, Sachse D. 2014. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7:109–12
    [Google Scholar]
  115. Rohling EJ, Sluijs A, Dijkstra HA, Köhler P, van de Wal RS et al. 2012. Making sense of palaeoclimate sensitivity. Nature 491:683–91
    [Google Scholar]
  116. Rush D, Osborne KA, Birgel D, Kappler A, Hirayama H et al. 2016. The bacteriohopanepolyol inventory of novel aerobic methane oxidising bacteria reveals new biomarker signatures of aerobic methanotrophy in marine systems. PLOS ONE 11:e0165635
    [Google Scholar]
  117. Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE et al. 2012. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40:221–49
    [Google Scholar]
  118. Sachse D, Radke J, Gleixner G 2004. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim. Cosmochim. Acta 68:4877–89
    [Google Scholar]
  119. Schefuß E, Eglinton TI, Spencer-Jones CL, Rullkötter J, De Pol-Holz R et al. 2016. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9:687–90
    [Google Scholar]
  120. Schefuß E, Ratmeyer V, Stuut JBW, Jansen JF, Sinninghe Damsté JS 2003. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim. Cosmochim. Acta 67:1757–67
    [Google Scholar]
  121. Schefuß E, Schouten S, Schneider RR 2005. Climatic controls on central African hydrology during the past 20,000 years. Nature 437:1003–6
    [Google Scholar]
  122. Schmidt GA, LeGrande AN, Hoffmann G. 2007. Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J. Geophys. Res. 112:D10D10103
    [Google Scholar]
  123. Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS. 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett. 204:265–74
    [Google Scholar]
  124. Schouten S, Hopmans EC, Sinninghe Damsté JS. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54:19–61
    [Google Scholar]
  125. Schreuder LT, Hopmans EC, Stuut J-BW, Sinninghe Damsté JS, Schouten S 2018. Transport and deposition of the fire biomarker levoglucosan across the tropical North Atlantic Ocean. Geochim. Cosmochim. Acta 227:171–85
    [Google Scholar]
  126. Sessions AL. 2016. Factors controlling the deuterium contents of sedimentary hydrocarbons. Org. Geochem. 96:43–64
    [Google Scholar]
  127. Simoneit BR, Schauer JJ, Nolte C, Oros DR, Elias VO et al. 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 33:173–82
    [Google Scholar]
  128. Sinninghe Damsté JS 2016. Spatial heterogeneity of sources of branched tetraethers in shelf systems: the geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia). Geochim. Cosmochim. Acta 186:13–31
    [Google Scholar]
  129. Sinninghe Damsté JS, Hopmans EC, Pancost RD, Schouten S, Geenevasen JA 2000. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chem. Commun. 2000:1683–84
    [Google Scholar]
  130. Sinninghe Damsté JS, Rijpstra WIC, Foesel BU, Huber KJ, Overmann J et al. 2018. An overview of the occurrence of ether- and ester-linked iso-diabolic acid membrane lipids in microbial cultures of the Acidobacteria: implications for brGDGT paleoproxies for temperature and pH. Org. Geochem. 124:63–76
    [Google Scholar]
  131. Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Weijers JW, Foesel BU, Overmann J et al. 2011. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl. Environ. Microbiol. 77:124147–54
    [Google Scholar]
  132. Smith FA, Freeman KH. 2006. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim. Cosmochim. Acta 70:1172–87
    [Google Scholar]
  133. Smith RW, Bianchi TS, Li X. 2012. A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: implications for the BIT Index. Geochim. Cosmochim. Acta 80:14–29
    [Google Scholar]
  134. Talbot HM, Bischoff J, Inglis GN, Collinson ME, Pancost RD. 2016. Polyfunctionalised bio- and geohopanoids in the Eocene Cobham Lignite. Org. Geochem. 96:77–92
    [Google Scholar]
  135. Talbot HM, Farrimond P. 2007. Bacterial populations recorded in diverse sedimentary biohopanoid distributions. Org. Geochem. 38:1212–25
    [Google Scholar]
  136. Talbot HM, Handley L, Spencer-Jones CL, Dinga BJ, Schefuß E et al. 2014. Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments. Geochim. Cosmochim. Acta 133:387–401
    [Google Scholar]
  137. Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson KA et al. 1995. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269:522046–50
    [Google Scholar]
  138. Tibbett EJ, Scher HD, Warny S, Tierney JE, Passchier S, Feakins SJ 2021. Late Eocene record of hydrology and temperature from Prydz Bay, East Antarctica. Paleoceanogr. Paleoclimatol. 36:e2020PA004204
    [Google Scholar]
  139. Tierney JE, deMenocal PB 2013. Abrupt shifts in Horn of Africa hydroclimate since the Last Glacial Maximum. Science 342:843–46
    [Google Scholar]
  140. Tierney JE, Pausata FS, deMenocal PB 2017. Rainfall regimes of the Green Sahara. Sci. Adv. 3:e1601503
    [Google Scholar]
  141. Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R et al. 2020. Past climates inform our future. Science 370:6517
    [Google Scholar]
  142. Tierney JE, Russell JM, Eggermont H, Hopmans E, Verschuren D, Sinninghe Damsté JS. 2010. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim. Cosmochim. Acta 74:4902–18
    [Google Scholar]
  143. Tierney JE, Russell JM, Huang Y, Sinninghe Damsté JS, Hopmans EC, Cohen AS 2008. Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322:252–55
    [Google Scholar]
  144. Tierney JE, Ummenhofer CC, Demenocal PB. 2015. Past and future rainfall in the Horn of Africa. Sci. Adv. 1:e1500682
    [Google Scholar]
  145. Tipple BJ, Pagani M. 2010. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: implications for C4 grasslands and hydrologic cycle dynamics. Earth Planet. Sci. Lett. 299:250–62
    [Google Scholar]
  146. Treibs A. 1934. Chlorophyll- und Haminderivative in bituminosen Gesteinen, Erdolen, Erdwachsen und Asphalten. Anal. Chem. 510:42–62
    [Google Scholar]
  147. Vachula R, Cheung A. 2021. Late Neogene surge in sedimentary charcoal fluxes partly due to preservation biases, not fire activity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 567:110273
    [Google Scholar]
  148. van Dongen BE, Talbot HM, Schouten S, Pearson PN, Pancost RD. 2006. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania. Org. Geochem. 37:5539–57
    [Google Scholar]
  149. Van Winden JF, Talbot HM, Kip N, Reichart G-J, Pol A et al. 2012. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss. Geochim. Cosmochim. Acta 77:52–61
    [Google Scholar]
  150. Vonk JE, Drenzek NJ, Hughen KA, Stanley RH, McIntyre C et al. 2019. Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds. Geochim. Cosmochim. Acta 244:502–21
    [Google Scholar]
  151. Weber Y, Sinninghe Damsté JS, Zopfi J, De Jonge C, Gilli A et al. 2018. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes. PNAS 115:10926–31
    [Google Scholar]
  152. Weijers JW, Panoto E, van Bleijswijk J, Schouten S, Rijpstra WIC et al. 2009. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids. Geomicrobiol. J. 26:6402–14
    [Google Scholar]
  153. Weijers JW, Schefuß E, Schouten S, Sinninghe Damsté JS. 2007a. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315:1701–4
    [Google Scholar]
  154. Weijers JW, Schouten S, van den Donker JC, Hopmans EC, Sinninghe Damsté JS 2007b. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71:703–13
    [Google Scholar]
  155. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C et al. 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369:65091383–87
    [Google Scholar]
  156. Wilf P. 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:3373–90
    [Google Scholar]
  157. Windler G, Tierney JE, Anchukaitis KJ 2021. Glacial-interglacial shifts dominate tropical Indo-Pacific hydroclimate during the late Pleistocene. Geophys. Res. Lett. 48:15e2021GL093339
    [Google Scholar]
  158. Windler G, Tierney JE, Zhu J, Poulsen CJ. 2020. Unraveling glacial hydroclimate in the Indo-Pacific warm pool: perspectives from water isotopes. Paleoceanogr. Paleoclimatol. 35:e2020PA003985
    [Google Scholar]
  159. Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–96
    [Google Scholar]
  160. Wu MS, Feakins SJ, Martin RE, Shenkin A, Bentley LP et al. 2017. Altitude effect on leaf wax carbon isotopic composition in humid tropical forests. Geochim. Cosmochim. Acta 206:1–17
    [Google Scholar]
  161. Wu MS, West AJ, Feakins SJ. 2019. Tropical soil profiles reveal the fate of plant wax biomarkers during soil storage. Org. Geochem. 128:1–15
    [Google Scholar]
  162. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33:489–515
    [Google Scholar]
  163. Zell C, Kim J-H, Hollander D, Lorenzoni L, Baker P et al. 2014. Sources and distributions of branched and isoprenoid tetraether lipids on the Amazon shelf and fan: implications for the use of GDGT-based proxies in marine sediments. Geochim. Cosmochim. Acta 139:293–312
    [Google Scholar]
  164. Zeng Z, Liu XL, Farley KR, Wei JH, Metcalf WW, at al. 2019. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean. PNAS 116:4522505–11
    [Google Scholar]
  165. Zhang YG, Zhang CL, Liu X-L, Li L, Hinrichs K-U, Noakes JE 2011. Methane Index: a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet. Sci. Lett. 307:525–34
    [Google Scholar]
  166. Zheng Y, Pancost RD, Liu X, Wang Z, Naafs B et al. 2017. Atmospheric connections with the North Atlantic enhanced the deglacial warming in northeast China. Geology 45:1031–34
    [Google Scholar]
  167. Zheng Y, Singarayer JS, Cheng P, Yu X, Liu Z et al. 2014. Holocene variations in peatland methane cycling associated with the Asian summer monsoon system. Nat. Commun. 5:4631
    [Google Scholar]
  168. Zhu C, Wagner T, Talbot HM, Weijers JW, Pan J-M, Pancost RD. 2013. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea. Geochim. Cosmochim. Acta 117:129–43
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-095943
Loading
/content/journals/10.1146/annurev-earth-032320-095943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error