1932

Abstract

Water ice Ih exhibits brittle behavior when rapidly loaded. Under tension, it fails via crack nucleation and propagation. Compressive failure is more complicated. Under low confinement, cracks slide and interact to form a frictional (Coulombic) fault. Under high confinement, frictional sliding is suppressed and adiabatic heating through crystallographic slip leads to the formation of a plastic fault. The coefficient of static friction increases with time under load, owing to creep of asperities in contact. The coefficient of kinetic (dynamic) friction, set by the ratio of asperity shear strength to hardness, increases with velocity at lower speeds and decreases at higher speeds as contacts melt through frictional heating. Microcracks, upon reaching a critical number density (which near the ductile-to-brittle transition is nearly constant above a certain strain rate), form a pathway for percolation. Additional work is needed on the effects of porosity and crack healing.

  • ▪  An understanding of brittle failure is essential to better predict the integrity of the Arctic and Antarctic sea ice covers and the tectonic evolution of the icy crusts of Enceladus, Europa, and other extraterrestrial satellites.
  • ▪  Fundamental to the brittle failure of ice is the initiation and propagation of microcracks, frictional sliding across crack faces, and localization of strain through both crack interaction and adiabatic heating.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-085507
2022-05-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-085507.html?itemId=/content/journals/10.1146/annurev-earth-032320-085507&mimeType=html&fmt=ahah

Literature Cited

  1. Akkok M, Ettles CMM, Calabrese SJ. 1987. Parameters affecting the kinetic friction of ice. J. Tribol. 109:552–59
    [Google Scholar]
  2. Andrews LC, Hoffman MJ, Neumann TA, Catania GA, Luthi MP et al. 2018. Seasonal evolution of the subglacial hydrologic system modified by supraglacial lake drainage in western Greenland. J. Geophys. Res. Earth Surf. 123:1479–96
    [Google Scholar]
  3. Arakawa M, Maeno N. 1997. Mechanical strength of polycrystalline ice under uniaxial compression. Cold Reg. Sci. Technol. 26:215–29
    [Google Scholar]
  4. Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science 336:1408
    [Google Scholar]
  5. Ashby MF, Hallam SD 1986. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall 34:497–510
    [Google Scholar]
  6. Barnes P, Tabor D, Walker JCF 1971. The friction and creep of polycrystalline ice. Proc. R. Soc. A 1557:127–55
    [Google Scholar]
  7. Berthoud P, Baumberger T, G'Sell C, Hiver J-M 1999. Physical analysis of the state- and rate-dependent friction law: static friction. Phys. Rev. B 59:14313–27
    [Google Scholar]
  8. Bowden FP, Tabor D. 1950. The Friction and Lubrication of Solids Oxford, UK: Clarendon
  9. Bowden FP, Tabor D. 1964. The Friction and Lubrication of Solids, Part II Oxford, UK: Clarendon
  10. Cannon NP, Schulson EM, Smith TR, Frost HJ. 1990. Wing cracks and brittle compressive fracture. Acta Metall. Mater. 38:1955–62
    [Google Scholar]
  11. Chester FM. 1988. The brittle-ductile transition in a deformation-mechanism map for halite. Tectonophysics 154:125–36
    [Google Scholar]
  12. Choukroun M, Molaro JL, Hodyss R, Marteau E, Backes P et al. 2020. Strength evolution of ice plume deposit analogs of Enceladus and Europa. Geophys. Res. Lett. 47:e2020GL088953
    [Google Scholar]
  13. Christoffersen P, Bougamont M, Hubbard A, Doyle SH, Grigsby S, Pettersson R. 2018. Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture. Nat. Commun. 9:1064
    [Google Scholar]
  14. Chudley TR, Christoffersen P, Doyle SH, Bougamont M, Schoonman CM et al. 2019. Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier. PNAS 116:25468–77
    [Google Scholar]
  15. Cole DM. 1988. Crack nucleation in polycrystalline ice. Cold Reg. Sci. Technol. 15:79–87
    [Google Scholar]
  16. Cole DM. 1995. A model for the anelastic straining of saline ice subjected to cyclic loading. Philos. Mag. A 72:231–48
    [Google Scholar]
  17. Curry JA, Schramm JL, Ebert EE. 1995. Sea-ice albedo climate feedback mechanism. J. Clim. 8:240–47
    [Google Scholar]
  18. Das SB, Joughin I, Behn MD, Howat IM, King MA et al. 2008. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320:778–81
    [Google Scholar]
  19. Dieterich JH. 1978. Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys. 116:790–806
    [Google Scholar]
  20. Dieterich JH, Kilgore BD. 1996. Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256:219–39
    [Google Scholar]
  21. Dokos SJ. 1946. Sliding friction under extreme pressures—1. J. Appl. Mech. 13:A148–56
    [Google Scholar]
  22. Doyle SH, Hubbard AL, Dow CF, Jones GA, Fitzpatrick A et al. 2013. Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet. Cryosphere 7:129–40
    [Google Scholar]
  23. Durham WB, Heard HC, Kirby SH. 1983. Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: preliminary results. J. Geophys. Res. 88:S01B377–92
    [Google Scholar]
  24. Durham WB, Kirby SH, Stern LA 1997. Creep of water ices at planetary conditions: a compilation. J. Geophys. Res. 102:E716293–302
    [Google Scholar]
  25. Durham WB, Stern LA. 2001. Rheological properties of water ice—applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci. 29:295–330
    [Google Scholar]
  26. Duval P, Ashby MF, Anderman I 1983. Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem. 87:4066–74
    [Google Scholar]
  27. Eicken H, Grenfell TC, Perovich DK, Richter-Menge JA, Frey K. 2004. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res. 109:C8C08007
    [Google Scholar]
  28. Eicken H, Krouse HR, Kadko D, Perovich DK 2002. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. 107:C108046
    [Google Scholar]
  29. Flocco D, Feltham DL, Turner AK. 2010. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. 115:C8C08012
    [Google Scholar]
  30. Forster RR, Box JE, van den Broeke MR, Miege C, Burgess EW et al. 2014. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci. 7:95–98
    [Google Scholar]
  31. Fortt AL, Schulson EM. 2007. The resistance to sliding along Coulombic shear faults in ice. Acta Mater 55:2253–64
    [Google Scholar]
  32. Fortt AL, Schulson EM. 2011. Frictional sliding across Coulombic faults in first-year sea ice: a comparison with freshwater ice. J. Geophys. Res. 116:C11C11012
    [Google Scholar]
  33. Frankenstein G, Garner R. 1967. Equations for determining the brine volume of sea ice from −0.5° to −22.9°C. J. Glaciol. 6:48349–58
    [Google Scholar]
  34. Freitag J, Eicken H. 2003. Meltwater circulation and permeability of Arctic summer sea ice derived from hydrological field experiments. J. Glaciol. 49:349–58
    [Google Scholar]
  35. Frey KE, Perovich DK, Light B. 2011. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophys. Res. Lett. 38:L22501
    [Google Scholar]
  36. Frost HJ, Ashby MF. 1982. Deformation-Mechanism Maps Oxford, UK: Permagon
  37. Gammon PH, Kiefte H, Clouter MJ, Denner WW. 1983. Elastic constants of artificial and natural ice samples by Brillouin spectroscopy. J. Glaciol. 29:433–60
    [Google Scholar]
  38. Gharamti IE, Dempsey JP, Polojarvi A. 2021a. Creep and fracture of warm columnar freshwater ice. Cryosphere 15:52401–21
    [Google Scholar]
  39. Gharamti IE, Dempsey JP, Polojärvi A, Tuhkuri J 2021b. Fracture of warm S2 columnar freshwater ice: size and rate effects. Acta Mater 202:22–34
    [Google Scholar]
  40. Golden KM. 2001. Brine percolation and the transport properties of sea ice. Ann. Glaciol. 33:28–36
    [Google Scholar]
  41. Golden KM, Ackley SF, Lytle VI. 1998. The percolation phase transition in sea ice. Science 282:2238–41
    [Google Scholar]
  42. Golden KM, Eicken H, Heaton AL, Miner J, Pringle DJ, Zhu J. 2007. Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett. 34:L16501
    [Google Scholar]
  43. Golding N, Durham WB, Prior DJ, Stern LA. 2020. Plastic faulting in ice. J. Geophys. Res. Solid Earth 125:e2019JB018749
    [Google Scholar]
  44. Golding N, Renshaw CE, Burks CE, Lucas KN, Fortt AL et al. 2013. Mechanical properties of the ice I–magnesium sulfate eutectic: a comparison with freshwater ice in reference to Europa. Icarus 225:248–56
    [Google Scholar]
  45. Golding N, Schulson EM, Renshaw CE. 2010. Shear faulting and localized heating in ice: the influence of confinement. Acta Mater 58:5043–56
    [Google Scholar]
  46. Golding N, Schulson EM, Renshaw CE. 2012. Shear localization in ice: mechanical response and structural evolution during P-faulting. Acta Mater 60:3616–31
    [Google Scholar]
  47. Golding N, Snyder SA, Schulson EM, Renshaw CE. 2014. Plastic faulting in saltwater ice. J. Glaciol. 60:447–52
    [Google Scholar]
  48. Griffith AA. 1925. The theory of rupture. Proceedings of the First International Congress of Applied Mechanics: Delft 1924 CB Biezeno, JM Burgers 55–63 Delft, Neth: J. Waltman Jr.
    [Google Scholar]
  49. Hammond NP, Barr AC, Cooper RF, Caswell TE, Hirth G. 2018. Experimental constraints on the fatigue of icy satellite lithospheres by tidal forces. J. Geophys. Res. Planets 123:390–404
    [Google Scholar]
  50. Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A et al. 2006. Enceladus’ water vapor plume. Science 311:1422–25
    [Google Scholar]
  51. Hibler WD III, Schulson EM. 2000. On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res. 105:C717105–20
    [Google Scholar]
  52. Hoppa G, Tufts BR, Greenberg R, Geissler P. 1999. Strike-slip faults on Europa: global shear patterns driven by tidal stress. Icarus 141:2287–98
    [Google Scholar]
  53. Horii H, Nemat-Nasser S. 1986. Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans. R. Soc. A 319:337–74
    [Google Scholar]
  54. Howat IM, de la Pena S, van Angelen JH, Lenaerts JTM, van den Broeke MR. 2013. Expansion of meltwater lakes on the Greenland Ice Sheet. Cryosphere 7:201–4
    [Google Scholar]
  55. Iliescu D, Murdza A, Schulson EM, Renshaw CE. 2017. Strengthening ice through cyclic loading. J. Glaciol. 63:663–69
    [Google Scholar]
  56. Jaeger JC, Cook NGW. 1979. Fundamentals of Rock Mechanics London: Chapman & Hall
  57. Kawamura T, Ishikawa M, Takatsuka T, Kojima S, Shirasawa K 2006. Measurements of permeability of sea ice. Proceedings of the 18th IAHR International Symposium on Ice, Sapporo, Japan, 28 August–1 September 2006 H Saeki, H Daigaku 105–12 Sapporo, Japan: Hokkaido Univ.
    [Google Scholar]
  58. Kennedy FE, Schulson EM, Jones D. 2000. Friction of ice on ice at low sliding velocities. Philos. Mag. A 80:1093–110
    [Google Scholar]
  59. Kietzig A-M, Hatzikiriakos SG, Englezos P. 2010. Physics of ice friction. J. Appl. Phys. 107:081101
    [Google Scholar]
  60. Kilgore BD, Blanpied ML, Dieterich JH. 1993. Velocity dependent friction of granite over a wide range of conditions. Geophys. Res. Lett. 20:903–6
    [Google Scholar]
  61. Kirchner HOK, Michot G, Schweizer J. 2000. Fracture toughness of snow in tension. Philos. Mag. A 80:1265–72
    [Google Scholar]
  62. Krawczynski MJ, Behn MD, Das SB, Joughin I. 2009. Constraints on the lake volume required for hydro-fracture through ice sheets. Geophys. Res. Lett. 36:L10501
    [Google Scholar]
  63. Kuehn GA, Schulson EM. 1994. The mechanical properties of saline ice under uniaxial compression. Ann. Glaciol. 19:39–48
    [Google Scholar]
  64. Kwok R 2001. Deformation of the Arctic Ocean sea ice cover: a qualitative survey. Scaling Laws in Ice Mechanics JP Dempsey, HH Shen 315–22 New York: Springer
    [Google Scholar]
  65. Lee RW, Schulson EM. 1988. The strength and ductility of ice under tension. J. Offshore Mech. Arct. Eng. 110:187–91
    [Google Scholar]
  66. Lishman B, Sammonds P, Feltham D. 2011. A rate and state friction law for saline ice. J. Geophys. Res. 116:C5C05011
    [Google Scholar]
  67. Litwin KL, Zygielbaum BR, Polito PJ, Sklar LS, Collins GC. 2012. Influence of temperature, composition, and grain size on the tensile failure of water ice: implications for erosion on Titan. J. Geophys. Res. 117:E8E08013
    [Google Scholar]
  68. Ma RZ, Cao DY, Zhu CQ, Tian Y, Peng JB et al. 2020. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577:60–63
    [Google Scholar]
  69. Makkonen L. 2012. A thermodynamic model of sliding friction. AIP Adv 2:012179
    [Google Scholar]
  70. Makkonen L, Tikanmäki M. 2014. Modeling the friction of ice. Cold Reg. Sci. Technol. 102:84–93
    [Google Scholar]
  71. Marchenko A, Lishman B. 2017. The influence of closed brine pockets and permeable brine channels on the thermo-elastic properties of saline ice. Philos. Trans. R. Soc. A 375:20151351
    [Google Scholar]
  72. Marko JR, Thomson RE. 1977. Rectilinear leads and internal motions in the ice pack of the western Arctic Ocean. J. Geophys. Res. 82:6979–87
    [Google Scholar]
  73. Marone C. 1998. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391:69–71
    [Google Scholar]
  74. Marsan D, Stern H, Lindsay R, Weiss J 2004. Scale dependence and localization of the deformation of Arctic sea ice. Phys. Rev. Lett. 93:178501
    [Google Scholar]
  75. McCarthy C, Savage H, Nettles M. 2017. Temperature dependence of ice-on-rock friction at realistic glacier conditions. Philos. Trans. R. Soc. A 375:20150348
    [Google Scholar]
  76. McClintock FA, Walsh JB 1962. Friction of Griffith Cracks in Rock Under Pressure. Proceedings of the 4th U.S. National Congress on Applied Mechanics RM Rosenberg, MV Barton, RL Bisplinghoff 1015–22 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  77. Miege C, Forster RR, Brucker L, Koenig LS, Solomon DK et al. 2016. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. J. Geophys. Res. Earth Surf. 121:2381–98
    [Google Scholar]
  78. Miller O, Solomon DK, Miege C, Koenig L, Forster R et al. 2020. Hydrology of a perennial firn aquifer in Southeast Greenland: an overview driven by field data. Water Resour. Res. 56:e2019WR026348
    [Google Scholar]
  79. Molaro JL, Choukroun M, Phillips CB, Phelps ES, Hodyss R et al. 2019. The microstructural evolution of water ice in the solar system through sintering. J. Geophys. Res. Planets 124:243–77
    [Google Scholar]
  80. Montagnat M, Schulson EM. 2003. On friction and surface cracking during sliding. J. Glaciol. 49:391–96
    [Google Scholar]
  81. Murdza A, Marchenko A, Schulson EM, Renshaw CE. 2021a. Cyclic strengthening of lake ice. J. Glaciol. 67:182–85
    [Google Scholar]
  82. Murdza A, Polojärvi A, Schulson EM, Renshaw CE 2021b. The flexural strength of bonded ice. Cryosphere 15:2957–67
    [Google Scholar]
  83. Murdza A, Schulson EM, Renshaw CE. 2020. Strengthening of columnar-grained freshwater ice through cyclic flexural loading. J. Glaciol. 66:556–66
    [Google Scholar]
  84. Murdza A, Schulson EM, Renshaw CE. 2021c. Behavior of saline ice under cyclic flexural loading. Cryosphere 15:2415–28
    [Google Scholar]
  85. Murdza A, Schulson EM, Renshaw CE 2022. Relaxation of flexure-induced strengthening of ice. Geophys. Res. Lett. 11e2021GL096559
    [Google Scholar]
  86. Nicolaus M, Katlein C, Maslanik J, Hendricks S 2012. Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophys. Res. Lett. 39:L24501
    [Google Scholar]
  87. Nixon WA, Schulson EM. 1988. Fracture toughness of ice over a range of grain sizes. J. Offshore Mech. Arct. Eng. 110:192–96
    [Google Scholar]
  88. Noda H, Shimamoto T. 2010. A rate- and state-dependent ductile flow law of polycrystalline halite under large shear strain and implications for transition to brittle deformation. Geophys. Res. Lett. 37:L09310
    [Google Scholar]
  89. Olgin JG, Smith-Konter BR, Pappalardo RT. 2011. Limits of Enceladus's ice shell thickness from tidally driven tiger stripe shear failure. Geophys. Res. Lett. 38:L02201
    [Google Scholar]
  90. Ono N, Kasai T. 1985. Surface-layer salinity of young sea ice. Ann. Glaciol. 6:298–99
    [Google Scholar]
  91. Perovich DK, Grenfell TC, Light B, Hobbs PV. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res. 107:C108044
    [Google Scholar]
  92. Persson BNJ. 2000. Friction dynamics for curved solid surfaces with long-range elasticity. J. Chem. Phys. 113:5477–84
    [Google Scholar]
  93. Petrenko VF, Whitworth RW. 1999. Physics of Ice Oxford, UK: Oxford Univ. Press
  94. Polashenski C, Golden KM, Perovich DK, Skylingstad E, Arnsten A et al. 2017. Percolation blockage: a process that enables melt pond formation on first year Arctic sea ice. J. Geophys. Res. Oceans 122:413–40
    [Google Scholar]
  95. Polashenski C, Perovich D, Courville Z 2012. The mechanisms of sea ice melt pond formation and evolution. JJ. Geophys. Res. 117:C1C01001
    [Google Scholar]
  96. Popovic P, Silber MC, Abbot DS. 2020. Critical percolation threshold restricts late-summer Arctic sea ice melt pond coverage. J. Geophys. Res. Oceans 125:e2019JC016029
    [Google Scholar]
  97. Porco CC, Dones L, Mitchell C. 2017. Could it be snowing microbes on Enceladus? Assessing conditions in its plume and implications for future missions. Astrobiology 17:9876–901
    [Google Scholar]
  98. Postberg F, Schmidt J, Hillier J, Kempf S, Srama R. 2011. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–22
    [Google Scholar]
  99. Pringle DJ, Miner JE, Eicken H, Golden KM 2009. Pore space percolation in sea ice single crystals. J. Geophys. Res. 114:C12C12017
    [Google Scholar]
  100. Pritchard RS, Li G, Davis RO. 2012. A deterministic-statistical sea ice drift forecast model. Cold Reg. Sci. Technol. 76:–7752–62
    [Google Scholar]
  101. Rampal P, Weiss J, Marsan D, Lindsay R, Stern H 2008. Scaling properties of sea ice deformation from buoy dispersion analysis. J. Geophys. Res. 113:C3C03002
    [Google Scholar]
  102. Reinen LA, Tullis TE, Weeks JD. 1992. Two-mechanism model for frictional sliding of serpentinite. Geophys. Res. Lett. 19:1535–38
    [Google Scholar]
  103. Renshaw CE. 1999. Connectivity of joint networks with power law length distributions. Water Resour. Res. 35:2661–70
    [Google Scholar]
  104. Renshaw CE, Marchenko A, Schulson EM, Karulin E. 2018. Effect of compressive loading on first-year sea-ice permeability. J. Glaciol. 64:443–49
    [Google Scholar]
  105. Renshaw CE, Schulson EM. 2001. Universal behavior in compressive failure of brittle materials. Nature 412:897–900
    [Google Scholar]
  106. Renshaw CE, Schulson EM. 2017. Strength-limiting mechanisms in high-confinement, brittle-like failure: adiabatic transformational faulting. J. Geophys. Res. Solid Earth 122:1088–106
    [Google Scholar]
  107. Renshaw CE, Schulson EM, Iliescu D. 2019. Experimental observation of the onset of percolation in freshwater granular ice. J. Geophys. Res. Solid Earth 124:2445–56
    [Google Scholar]
  108. Renshaw CE, Schulson EM, Iliescu D, Murdza A. 2020. Increased fractured rock permeability after percolation despite limited crack growth. J. Geophys. Res. Solid Earth 125:e2019JB019240
    [Google Scholar]
  109. Richter-Menge JA, Jones KF. 1993. The tensile strength of first-year sea ice. J. Glaciol. 39:609–18
    [Google Scholar]
  110. Richter-Menge JA, McNutt SL, Overland JE, Kwok R. 2002. Relating arctic pack ice stress and deformation under winter conditions. J. Geophys. Res. 107:C108040
    [Google Scholar]
  111. Rist MA, Sammonds PR, Murrell SAF, Meredith PG, Doake CSM et al. 1999. Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing. J. Geophys. Res. 104:B22973–87
    [Google Scholar]
  112. Saeki H, Ono T, Nakazawa N, Sakai M, Tanaka S. 1986. The coefficient of friction between sea ice and various materials used in offshore structures. J. Energy Resour. Technol. 108:65–71
    [Google Scholar]
  113. Schreyer HL, Sulsky DL, Munday LB, Coon MD, Kwok R. 2006. Elastic-decohesive constitutive model for sea ice. J. Geophys. Res. 111:C11C11S26
    [Google Scholar]
  114. Schubnel A, Brunet F, Hilairet N, Gasc J, Wang Y, Green HW 2013. Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Science 341:1377
    [Google Scholar]
  115. Schulson EM. 1990. The brittle compressive fracture of ice. Acta Metall. Mater. 38:1963–76
    [Google Scholar]
  116. Schulson EM. 2002. Compressive shear faults in ice: plastic vs. Coulombic faults. Acta Mater 50:3415–24
    [Google Scholar]
  117. Schulson EM. 2004. Compressive shear faults within arctic sea ice: fracture on scales large and small. J. Geophys. Res. 109:C7C07016
    [Google Scholar]
  118. Schulson EM. 2015. Low-speed friction and brittle compressive failure of ice: fundamental processes in ice mechanics. Intern. Mater. Rev. 60:451–78
    [Google Scholar]
  119. Schulson EM. 2018. Friction of sea ice. Philos. Trans. R. Soc. A 376:20170336
    [Google Scholar]
  120. Schulson EM, Duval P. 2009. Creep and Fracture of Ice Cambridge, UK: Cambridge Univ. Press
  121. Schulson EM, Fortt AL. 2012. Friction of ice on ice. J. Geophys. Res. 117:B12B12204
    [Google Scholar]
  122. Schulson EM, Fortt AL. 2013. Static strengthening of frictional surfaces of ice. Acta Mater 61:1616–23
    [Google Scholar]
  123. Schulson EM, Iliescu D, Renshaw CE. 1999. On the initiation of shear faults during brittle compressive failure: a new mechanism. J. Geophys. Res. 104:B1695–705
    [Google Scholar]
  124. Schulson EM, Kuehn GA. 1993. Ductile ice. Philos. Mag. Lett. 67:151–57
    [Google Scholar]
  125. Schulson EM, Nodder ST, Renshaw CE. 2016. On the restoration of strength through stress-driven healing of faults in ice. Acta Mater 117:306–10
    [Google Scholar]
  126. Schweizer J, Michot G, Kirchner HOK. 2004. On the fracture toughness of snow. Ann. Glaciol. 38:1–8
    [Google Scholar]
  127. Scourfield S, Sammonds P, Lishman B, Marchenko A 2015. The effect of sea ice rubble in ice-ice sliding Paper presented at 23rd International Conference on Port and Oceans Engineering under Arctic Conditions Trondheim, Nor:.
  128. Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM. 2009. The emergence of surface-based Arctic amplification. Cryosphere 3:11–19
    [Google Scholar]
  129. Shimada M. 1992. Confirmation of two types of fracture in granite deformed at temperatures to 300°C. Tectonophysics 211:259–68
    [Google Scholar]
  130. Smith-Konter B, Pappalardo RT. 2008. Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus 198:435–51
    [Google Scholar]
  131. Snyder SA, Schulson EM, Renshaw CE. 2017. Effects of prestrain on the ductile-to-brittle transition of columnar ice. Acta Mater 108:110–26
    [Google Scholar]
  132. Stevens LA, Behn MD, McGuire JJ, Das SB, Joughin I et al. 2015. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature 522:73–76
    [Google Scholar]
  133. Sukhorukov S, Loset S. 2013. Friction of sea ice on sea ice. Cold Reg. Sci. Technol. 94:1–12
    [Google Scholar]
  134. Svetlizky I, Bayart E, Fineberg J 2019. Brittle fracture theory describes the onset of frictional motion. Annu. Rev. Condens. Matter Phys. 10:253–73
    [Google Scholar]
  135. Taylor D, Walsh M, Cullen A, O'Reilly P. 2016. The fracture toughness of eggshell. Acta Biomater 37:21–27
    [Google Scholar]
  136. Tsai VC, Stewart AL, Thompson AF. 2015. Marine ice-sheet profiles and stability under Coulomb basal conditions. J. Glaciol. 61:205–15
    [Google Scholar]
  137. Tullis J, Yund RA. 1977. Experimental deformation of dry Westerly granite. J. Geophys. Res. 82:365705–18
    [Google Scholar]
  138. van der Veen CJ. 2007. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett. 34:L01501
    [Google Scholar]
  139. Varshneya AK. 2006. Fundamentals of Inorganic Glasses. Boston: Academic
  140. Wachter LM, Renshaw CE, Schulson EM. 2009. Transition in brittle failure mode in ice under low confinement. Acta Mater 57:345–55
    [Google Scholar]
  141. Wang Y, Hu X 2017. Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples. Rock Mech. Rock Eng 50:17–28
    [Google Scholar]
  142. Weeks WF, Ackley SF 1986. The growth, structure and properties of sea ice. The Geophysics of Sea Ice N Untersteiner 9–164 New York: Plenum
    [Google Scholar]
  143. Weertman J. 1983. Creep deformation of ice. Annu. Rev. Earth Planet. Sci. 11:215–40
    [Google Scholar]
  144. Weiss J, Dansereau V. 2017. Linking scales in sea ice mechanics. Philos. Trans. R. Soc. A 375:20150352
    [Google Scholar]
  145. Weiss J, Schulson EM, Stern HL. 2007. Sea ice rheology in-situ, satellite and laboratory observations: fracture and friction. Earth Planet. Sci. Lett. 255:1–8
    [Google Scholar]
  146. Wilchinsky AV, Feltham DL. 2011. Modeling Coulombic failure of sea ice with leads. J. Geophys. Res. 116:C8C08040
    [Google Scholar]
  147. Xu P, Cui B, Bu Y, Wang H, Guo X et al. 2021. Elastic ice microfibers. Science 373:6551187–92
    [Google Scholar]
  148. Yasui M, Schulson EM, Renshaw CE. 2017. Experimental studies in mechanical properties and ductile-to-brittle transition of ice-silica mixtures: Young's modulus, compressive strength and fracture toughness. J. Geophys. Res. Solid Earth 122:6014–30
    [Google Scholar]
  149. Yasutome A, Arakawa M, Maeno N. 1999. Measurements of ice-ice friction coefficients. Seppyo 61:437–43
    [Google Scholar]
  150. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K 2002. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–22
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-085507
Loading
/content/journals/10.1146/annurev-earth-032320-085507
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error