Skip to main content
Log in

Textural and compositional evolution of niobium minerals in the Miaoya carbonatite-hosted REE-Nb deposit from the South Qinling Orogen of central China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Miaoya carbonatite complex in the South Qinling Orogen hosts one of the largest REE-Nb deposits in China. The origin and evolution of REE enrichment in this Silurian intrusion have been extensively studied, whereas Nb mineralization remains less well understood. Here, we report detailed mineralogical and geochemical data on diverse Nb-bearing minerals from the Miaoya carbonatite to explain the development of Nb mineralization in these rocks. Ferrocolumbite is the dominant Nb mineral, which occurs principally as an alteration product of the earlier-crystallized Nb phases (uranopyrochlore, betafite, and fersmite). The ferrocolumbite varieties (Clb-1, Clb-2, Clb-3) inherited some compositional characteristics of its precursors, in particular a trend of decreasing Ta2O5 and UO2 from Clb-1 to Clb-3, which mimics the Ta-U depletion trend from uranopyrochlore to betafite and fersmite. Varieties Clb-1 and Clb-2 and associated calcite and altered uranopyrochlore show evidence of hydrothermal overprint such as positive Eu anomaly. Ferrocolumbite Clb-2 shows slightly higher Eu/Eu* and Zr/Hf ratios and contains fewer relicts of its precursor mineral in comparison with Clb-1, possibly indicating local enrichment of F in the hydrothermal system. Calcite associated with Clb-3 and fersmite shows a trace element signature characteristic of igneous carbonates, suggesting that this mineral paragenesis is least affected by metasomatic overprint with no contribution from external fluids. The study of the Miaoya REE-Nb deposit shows that late-stage metasomatism of carbonatites does not significantly enhance Nb grade in contrast to that of REE mineralization and leads to the formation of a secondary Nb paragenesis with specific trace element characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

taken from Xu et al. (2015) and Wu et al. (2021)

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anenburg M, Mavrogenes JA, Frigo C, Wall F (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci Adv 6:eabb6570

    Google Scholar 

  • Bao Z, Wang Q, Bai G, Zhao Z, Song Y, Liu X (2008) Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications. Sci Bull 53:2050–2061

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petrol 123:323–333

    Google Scholar 

  • Benaouda R, Kraemer D, Sitnikova M, Goldmann S, Freitag R, Bouali A, Mouttaqi A, El Haloui R, Essaadaoui M, Bau M (2020) Thorium-poor monazite and columbite-(Fe) mineralization in the Gleibat Lafhouda carbonatite and its associated iron-oxide-apatite deposit of the Ouled Dlim Massif, South Morocco. Gondwana Res 77:19–39

    Google Scholar 

  • Boyle RW (1980) Geochemical prospecting for uranium and thorium deposits. At Energy Rev 18:3–72

    Google Scholar 

  • Broom-Fendley S, Siegfried PR, Wall F, O Neill M, Brooker RA, Fallon EK, Pickles JR, Banks DA (2020) The origin and composition of carbonatite-derived carbonate-bearing fluorapatite deposits. Miner Deposita 56:863–884

    Google Scholar 

  • Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineral Mag 62:769–782

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. Eur J Mineral 14:821–836

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (1999) Calcite-amphibole-clinopyroxene rock from the Afrikanda Complex, Kola Peninsula, Russia; mineralogy and a possible link to carbonatites; I, Oxide minerals. Can Mineral 37:177–198

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Kressall RD, Crozier J, Pisiak LK, Sidhu R, Yang P (2015) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geol Rev 64:642–666

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Couëslan C, Yang P (2016) Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Miner Petrol 110:361–377

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Zaitsev AN, Couëslan C, Xu C, Kynický J, Mumin AH, Yang P (2017) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274:188–213

    Google Scholar 

  • Chakhmouradian AR, Williams CT (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineral Soc London pp 293–340

  • Chen W, Lu J, Jiang SY, Ying YC, Liu YS (2018) Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chem Geol 494:80–95

    Google Scholar 

  • Cordeiro PFDO, Brod JA, Palmieri M, de Oliveira CG, Barbosa ESR, Santos RV, Gaspar JC, Assis LC (2011) The Catalão I niobium deposit, central Brazil: resources, geology and pyrochlore chemistry. Ore Geol Rev 41:112–121

    Google Scholar 

  • Dey M, Bhattacharjee S, Chakrabarty A, Mitchell RH, Pal S, Sen AK (2021) Compositional variation and genesis of pyrochlore, belkovite and baotite from the Sevattur carbonatite complex, India. Mineral Mag 85:588–606

    Google Scholar 

  • Dong YP, Zhou DW, Zhang GW, Liu XM (1998) Geochemistry of the Caledonian basic volcanic rocks in the south margin of Qinling Orogenic belt and their tectonic implications. Geochimaca 5:432–441 (in Chinese with English abstract)

  • Dong YP, Santosh M (2016) Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res 29:1–40

    Google Scholar 

  • Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J, Hauzenberger C (2011) Tectonic evolution of the Qinling orogen, China: review and synthesis. J Asian Earth Sci 41:213–237

    Google Scholar 

  • Fan HR, Yang KF, Hu FF, Liu S, Wang KY (2016) The giant Bayan Obo REE-Nb-Fe deposit, China: controversy and ore genesis. Geosci Front 7:335–344

    Google Scholar 

  • Finch AA, McCreath JA, Reekie CDJ, Hutchison W, Ismaila A, Armour-Brown A, Andersen T, Simonsen SL (2019) From mantle to motzfeldt: a genetic model for syenite-hosted Ta, Nb-mineralisation. Ore Geol Rev 107:402–416

    Google Scholar 

  • Geisler T, Berndt J, Meyer HW, Pollok K, Putnis A (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between nature and experiment. Mineral Mag 68:905–922

    Google Scholar 

  • Harlov DE, Fӧrster H (2003) Fluid-induced nucleation of (Y+ REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229

    Google Scholar 

  • Harlov DE, Wirth R, Förster H (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Miner Petrol 150:268–286

    Google Scholar 

  • Hogarth DD (1977) Classification and nomenclature of the pyrochlore group. Am Mineral 62:403–410

    Google Scholar 

  • Hubei Geological Survey (1985) A study on the carbonatite type Niobium-REE ore deposit of Miaoya, Hubei, China: Internal material

  • James TC, McKie D (1958) The alteration of pyrochlore to columbite in carbonatites in Tanganyika. Mineral Mag 31:889–900

    Google Scholar 

  • Kaeter D, Barros R, Menuge JF (2021) Metasomatic high field strength element, tin, and base metal enrichment processes in lithium pegmatites from southeast Ireland. Econ Geol 116:169–198

    Google Scholar 

  • Kjarsgaard BA, Mitchell RH (2008) Solubility of Ta in the system CaCO3–Ca(OH)2–NaTaO3–NaNbO3±F at 0.1 GPa: implications for the crystallization of pyrochlore-group minerals in carbonatites. Can Mineral 46:981–990

    Google Scholar 

  • Le Bas MJ, Ba-Bttat M, Taylor RN, Milton JA, Windley BF, Evins PM (2004) The carbonatite-marble dykes of Abyan Province, Yemen Republic: the mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis. Miner Petrol 82:105–135

    Google Scholar 

  • Lee MJ, Lee JI, Garcia D, Moutte J, Williams CT, Wall F, Kim Y (2006) Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochem J 40:1–13

    Google Scholar 

  • Li SG, Sun W, Zhang G, Chen J, Yang Y (1996) Chronology and geochemistry of metavolcanic rocks from Heigouxia Valley in the Mianlue tectonic arc, South Qinling: observations for a Paleozoic oceanic basin and its close time. Sci China B 39:300–310

    Google Scholar 

  • Li JK, Li P, Wang DH, Li XJ (2019) A review of niobium and tantalum metallogenic regularity in China. China Sci Bull 64:1545–1566 (in Chinese with English abstract)

    Google Scholar 

  • Ling W, Ren B, Duan R, Liu X, Mao X, Peng L, Liu Z, Cheng J, Yang H (2008) Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. China Sci Bull 53:2192–2199

    Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Google Scholar 

  • Liu S, Ding L, Fan HR, Yang KF, Tang YW, She HD, Hao MZ (2020) Hydrothermal genesis of Nb mineralization in the giant Bayan Obo REE-Nb-Fe deposit (China): implicated by petrography and geochemistry of Nb-bearing minerals. Precambrian Res 348:105864

    Google Scholar 

  • Loges A, Migdisov AA, Wagner T, Williams-Jones AE, Markl G (2013) An experimental study of the aqueous solubility and speciation of Y(III) fluoride at temperatures up to 250°C. Geochim Cosmochim Acta 123:403–415

    Google Scholar 

  • Lu XS, Huang JM, Xiong YL, Zhong SY, Nie YM, Li ZG, Zhu ZY (2019) Geochemistry and Zircon U-Pb geochronology of the volcanic rocks in the tudiling Nb-Ta deposit, South Qinling Orogenic Belt, and it’s geological implications. Geol Sci Technol 38:40–51 (in Chinese with English abstract)

    Google Scholar 

  • Lu J, Chen W, Ying YC, Jiang SY, Zhao KD (2021) Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: implications for petrogenesis. Lithos 398–399:106276

    Google Scholar 

  • Lumpkin GR, Ewing RC (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. Am Mineral 80:732–743

    Google Scholar 

  • Ma RL, Chen WT, Zhang W, Chen YW (2021) Hydrothermal upgrading as an important tool for the REE mineralization in the Miaoya carbonatite-syenite complex, Central China. Am Mineral 106:1690–1703

    Google Scholar 

  • Mackay DAR, Simandl GJ (2015) Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits. Geochem-Explor Env A 15:167–178

    Google Scholar 

  • McCreath JA, Finch AA, Herd DA, Armour-Brown A (2013) Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: the mineralogy of a syenite-hosted Ta, Nb deposit. Am Mineral 98:426–438

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Melcher F, Graupner T, Gäbler HE, Sitnikova M, Oberthür T, Gerdes A, Badanina E, Chudy T (2017) Mineralogical and chemical evolution of tantalum-(niobium-tin) mineralisation in pegmatites and granites. Part 2: worldwide examples (excluding Africa) and an overview of global metallogenetic patterns. Ore Geol Rev 89:946–987

    Google Scholar 

  • Melgarejo JC, Costanzo A, Bambi A, Gon Alves AO, Neto AB (2012) Subsolidus processes as a key factor on the distribution of Nb species in plutonic carbonatites: The Tchivira case, Angola. Lithos 152:187–201

    Google Scholar 

  • Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300°C. Geochim Cosmochim Acta 73:7087–7109

    Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Google Scholar 

  • Mitchell RH (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–641

    Google Scholar 

  • Mitchell RH, Kjarsgaard BA (2002) Solubility of niobium in the system CaCO3-Ca (OH)2-NaNbO3 at 0.1 GPa pressure. Contrib Mineral Petr 144:93–97

    Google Scholar 

  • Mitchell RH, Kjarsgaard BA (2004) Solubility of niobium in the system CaCO3-CaF2-NaNbO3 at 0.1 GPa pressure: implications for the crystallization of pyrochlore from carbonatite magma. Contrib Mineral Petr 148:281–287

    Google Scholar 

  • Mitchell RH, Wahl R, Cohen A (2020) Mineralogy and genesis of pyrochlore apatitite from The Good Hope Carbonatite, Ontario: a potential niobium deposit. Mineral Mag 84:81–91

    Google Scholar 

  • Nasraoui M, Bilal E (2000) Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of different alteration stages. J Asian Earth Sci 18:237–251

    Google Scholar 

  • Nie X, Wang Z, Chen L, Yin J, Wang G (2019) Mineralogical constraints on Nb–REE mineralization of the Zhujiayuan Nb (−REE) deposit in the North Daba Mountain, South Qinling, China. Geol J 55:4845–4863

    Google Scholar 

  • Qian DD, Li JQ (1996) The discovering history of Chinese deposits: Hubei volume. Geological Publishing House, Beijing

    Google Scholar 

  • Ribeiro Da Costa I, Roseiro J, Figueiras J, Rodrigues PCR, Mateus A (2021) Pyrochlore from the Bailundo Carbonatite Complex (Angola): compositional variation and implications to mineral exploration. J Afr Earth Sci 177:104154

    Google Scholar 

  • Simandl GJ, Burt RO, Trueman DL, Paradis S (2018) Economic geology models 4. Tatalum and niobium: deposits, resources, exploration methods and market – a primer for geoscientists. Geosci Can 45:85–96

    Google Scholar 

  • Smith M, Kynicky J, Xu C, Song WL, Spratt J, Jeffries T, Brtnicky M, Korriva A, Cangelosi D (2018) The origin of secondary heavy rare earth element enrichment in carbonatites: constraints from the evolution of the Huanglongpu district, China. Lithos 308–309:65–82

    Google Scholar 

  • Su JH, Zhao XF, Li XC, Hu W, Chen M, Xiong YL (2019) Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: implications for the origin of REE-Nb-enriched carbonatite. Ore Geol Rev 113:103101

    Google Scholar 

  • Su JH, Zhao XF, Li XC, Su ZK, Liu R, Qin Z, Chen M (2021) Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, Central China: constraints from in situ elemental and isotopic analyses of phosphate minerals. Am Mineral 106:1545–1558

    Google Scholar 

  • Timofeev A, Williams-Jones AE (2015) The origin of niobium and tantalum mineralization in the Nechalacho REE Deposit, NWT, Canada. Econ Geol 110:1719–1735

    Google Scholar 

  • Torrό L, Villanova C, Castillo M, Campeny M, Gonçalves AO, Melgarejo JC (2012) Niobium and rare earth minerals from the Virulundo carbonatite, Namibe, Angola. Mineral Mag 76:393–409

    Google Scholar 

  • Tremblay J, Bédard LP, Matton G (2017) Columbitization of fluorcalciopyrochlore by hydrothermalism at the Saint-Honoré alkaline complex, Québec (Canada): new insights on halite in carbonatites. Ore Geol Rev 91:695–707

    Google Scholar 

  • U.S. Geological Survey (2000) Mineral commodity summaries 2021. U.S. Geological Survey, 198 p. https://doi.org/10.3133/mcs2000

  • U.S. Geological Survey (2021) Mineral commodity summaries 2021. U.S. Geological Survey, 200 p. https://doi.org/10.3133/mcs2021

  • Van Lichtervelde M, Holtz F, Melcher F (2018) The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: constraints from crystallization experiments of tantalite-tapiolite. Am Mineral 103:1401–1416

    Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Google Scholar 

  • Viladkar SG, Bismayer U, Zietlow P (2017) Metamict U-rich Pyrochlore of Newania Carbonatite, Udaipur, Rajasthan. J Geol Soc India 89:133–138

    Google Scholar 

  • Vrublevskii VV, Bukharova OV, Nebera TS, Sveshnikova VL (2019) Composition and origin of rare-metal (Nb–Ta, REE) and sulfide mineralization in magnesiocarbonatites from the Yenisei Ridge, Central Siberia. Ore Geol Rev 111:102949

    Google Scholar 

  • Wall F, Williams CT, Woolley AR, Nasraoui M (1996) Pyrochlore from weathered carbonatite at Lueshe, Zaire. Minral Mag 60:731–750

    Google Scholar 

  • Walter BF, Parsapoor A, Braunger S, Marks MAW, Wenzel T, Martin M, Markl G (2018) Pyrochlore as a monitor for magmatic and hydrothermal processes in carbonatites from the Kaiserstuhl volcanic complex (SW Germany). Chem Geol 498:1–16

    Google Scholar 

  • Walter BF, Giebel RJ, Steele-MacInnis M, Marks MA, Kolb J, Markl G (2021) Fluids associated with carbonatitic magmatism: a critical review and implications for carbonatite magma ascent. Earth-Sci Rev 215:103509

    Google Scholar 

  • Wang RR, Xu ZQ, Santosh M, Liang F, Fu X (2017) Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes. Tectonophysics 712–713:270–288

    Google Scholar 

  • Warr LN (2021) IMA-CNMNC approved mineral symbols. Mineral Mag 85:291–320

    Google Scholar 

  • Wu YB, Zheng YF (2013) Tectonic evolution of a composite collision orogen: an overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China. Gondwana Res 23:1402–1428

    Google Scholar 

  • Wu B, Hu YQ, Bonnetti C, Xu C, Yin R (2021) Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization. Ore Geol Rev 132:104059

    Google Scholar 

  • Xu C, Kynicky J, Chakhmouradian AR, Campbell IH, Allen CM (2010) Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos 118:145–155

    Google Scholar 

  • Xu C, Chakhmouradian AR, Taylor RN, Kynicky J, Li W, Song WL, Fletcher IR (2014) Origin of carbonatites in the South Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks. Geochim Cosmochim Acta 143:189–206

    Google Scholar 

  • Xu C, Kynicky J, Chakhmouradian AR, Li X, Song WL (2015) A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos 227:107–121

    Google Scholar 

  • Xue S, Ling M, Liu Y, Kang Q, Huang R, Zhang Z, Sun W (2020) The formation of the giant Huayangchuan U-Nb deposit associated with carbonatite in the Qingling Orogenic Belt. Ore Geol Rev 122:103498

    Google Scholar 

  • Yang C, Liu CX, Liu WL, Wan J, Duan XF, Zhang Z (2017) Geochemical characteristics of trachyte and Nb mineralization process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petro Mineral 36:605–618 (in Chinese with English abstract)

    Google Scholar 

  • Yang F, Xue F, Santosh M, Wang G, Kim SW, Shen Z, Jia W, Zhang X (2019) Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications. Geosci Front 10:1803–1821

    Google Scholar 

  • Ying YC, Chen W, Lu J, Jiang SY, Yang YH (2017) In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos 290:159–171

    Google Scholar 

  • Ying YC, Chen W, Simonetti A, Jiang SY, Zhao KD (2020) Significance of hydrothermal reworking for REE mineralization associated with carbonatite: constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochim Cosmochim Acta 280:340–359

    Google Scholar 

  • Zaitsev AN, Williams CT, Wall F, Zolotarev AA (2012) Evolution of chemical composition of pyrochlore group minerals from phoscorites and carbonatites of the Khibina alkaline massif. Geol Ore Deposits 54:503–515

    Google Scholar 

  • Zaitsev AN, Spratt J, Shtukenberg AG, Zolotarev AA, Britvin SN, Petrov SV, Kuptsova AV, Antonov AV (2021) Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania. Mineral Mag 85:532–553

    Google Scholar 

  • Zhang GW, Zhang BR, Yuan XC, Xiao QH (2001) Qinling orogenic belt and continental dynamics. Science Press, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Zhang ChengLi, Gao Shan, Yuan HongLin, Zhang GuoWei, Yan YunXiang, Luo JingLan, Luo JinHai (2007) Sr-Nd-Pb isotopes of the Early Paleozoic mafic-ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition. Science in China Series D: Earth Sciences 50(9):1293–1301. https://doi.org/10.1007/s11430-007-0088-7

    Article  Google Scholar 

  • Zhang W, Chen WT, Gao JF, Chen HK, Li JH (2019) Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite. Miner Deposita 54:1265–1280

    Google Scholar 

  • Zheng H, Chen HY, Wu C, Jiang HJ, Lai CK (2020) Genesis of the supergiant Huayangchuan carbonatite-hosted uranium-polymetallic deposit in the Qinling Orogen, Central China. Gondwana Res 86:250–265

    Google Scholar 

  • Zhu J, Wang L, Peng S, Peng L, Wu C, Qiu X (2017) U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China. Geol J 52:938–954

    Google Scholar 

  • Zhu W, Zheng Q, Liu XH, Chen YT, Liu N, Kang QQ, Yang L (2018) Geological and geochemical characteristics and genesis of the Shuanghekou niobium deposit in South Qinling, Shanxi. Geol Explor 54:0929–0939 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Bin Wu for his generous offer of fresh uranopyrochlore-bearing carbonatite samples. We are grateful to the comments provided by Kathryn Goodenough and Paul Bédard and editorial handling by Georges Beaudoin and Mohammed Bouabdellah, which all significantly improved this manuscript.

Funding

This study was supported financially by the National Key R&D Program of China (No. 2019YFA0708400), the National Natural Science Foundation of China (Nos. 41973016, 41673035, and 42030811), and the State Key Laboratory of Geological Processes and Mineral Resources (No. MSFGPMR03-2). ARC acknowledges support from the Natural Sciences and Engineering Research Council of Canada and Canada-China Scholars’ Exchange Fund during his visit to Wuhan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: M. BOUABDELLAH.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 248 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, YC., Chen, W., Chakhmouradian, A.R. et al. Textural and compositional evolution of niobium minerals in the Miaoya carbonatite-hosted REE-Nb deposit from the South Qinling Orogen of central China. Miner Deposita 58, 197–220 (2023). https://doi.org/10.1007/s00126-022-01126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-022-01126-y

Keywords

Navigation