Skip to main content
Log in

Photocatalytic Obtaining and Optical Properties of Composites Based on Layered Niobates and Silver Nanoparticles

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The photocatalytic properties of layered semiconductors, namely KNb3O8, and a product of its acid treatment, namely K3H3Nb10.8O30 in the reduction reaction of silver ions with the formation of the corresponding metal-semiconductor nanostructures are established. Electron microscopy has shown that silver nanoparticles are deposited mainly on the edges of niobate rods and plates when potassium niobate suspensions are irradiated with UV light in the presence of AgNO3. Silver nanoparticles of 10-30 nm are formed when K3H3Nb10.8O30 is used as a photocatalyst; they are deposited on the niobate surface and practically do not have a surface plasmon resonance band in the visible range of the spectrum, which may be associated with the formation of Ag2O on the surface of silver nanoparticles or the formation of their chain aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. W. Cui, H. Wang, Y. Liang, et al., Catal. Commun., 36, 71-74 (2013), https://doi.org/10.1016/j.catcom.2013.03.011.

    Article  CAS  Google Scholar 

  2. X. Liu, W. Que, and L. B. Kong, J. Alloys Compd., 627, 117-122 (2015), https://doi.org/10.1016/j.jallcom.2014.12.115.

    Article  CAS  Google Scholar 

  3. V. V. Shvalagin, G. Ya. Grodzyuk, N. S. Andryushina, et al., Theor. Exp. Chem., 52, No. 6, 337-341 (2017), https://doi.org/10.1007/s11237-017-9487-9.

    Article  CAS  Google Scholar 

  4. K. Sayama, A. Tanaka, K. Domen, et al., J. Phys. Chem., 95, No. 3, 1345-1348 (1991), https://doi.org/10.1021/j100156a058.

    Article  CAS  Google Scholar 

  5. A. Kudo, K. Sayama, A. Tanaka, et al., J. Catal., 120, No. 2, 337-352 (1989), https://doi.org/10.1016/0021-9517(89)90274-1.

    Article  CAS  Google Scholar 

  6. Q.-P. Ding, Yu.-P. Yuan, X. Xiong, et al., J. Phys. Chem. C, 112, No. 48, 18846-18848 (2008), https://doi.org/10.1021/jp804276.

    Article  CAS  Google Scholar 

  7. K. Domen, A. Kudo, A. Shinozaki, et al., J. Chem. Soc., Chem. Commun., No. 4, 356-357 (1986), https://doi.org/10.1039/C39860000356.

    Article  Google Scholar 

  8. V. V. Shvalagin, G. Ya. Grodzyuk, and S. Ya. Kuchmy, Theor. Exp. Chem., 53, No. 2, 100-105 (2017), https://doi.org/10.1007/s11237-017-9505-y.

    Article  CAS  Google Scholar 

  9. H. Shi and Z. Zou, J. Phys. Chem. Solids, 73, No. 6, 788-792 (2012), https://doi.org/10.1016/j.jpcs.2012.01.026.

    Article  CAS  Google Scholar 

  10. B. Paul and K.-H. Choo, Catal. Today, 230, 138-144 (2014), https://doi.org/10.1016/j.cattod.2013.11.020.

    Article  CAS  Google Scholar 

  11. P. Singh and I. Mijakovic, Front. Microbiol., 13, 820048 (2022), https://doi.org/10.3389/fmicb.2022.820048.

  12. I. P. Mukha, A. M. Eremenko, N. P. Smirnova, et al., Appl. Biochem. Microbiol., 49, 199-206 (2013), https://doi.org/10.1134/S0003683813020117.

    Article  CAS  Google Scholar 

  13. C. Zhang, Y. Li, D. Shuai, et al., Chem. Eng. J., 355, 399-415 (2019), https://doi.org/10.1016/j.cej.2018.08.158.

    Article  CAS  Google Scholar 

  14. A. L. Stroyuk, V. V. Shvalagin, and S. Ya. Kuchmii, Theor. Exp. Chem., 40, No. 2, 98-104 (2004), https://doi.org/10.1023/B:THEC.0000028904.52818.e7.

    Article  CAS  Google Scholar 

  15. V. Amendola, O. M. Bakr, and F. Stellacci, Plasmonics, 5, No. 1, 85-97 (2010), https://doi.org/10.1007/s11468-009-9120-4.

    Article  CAS  Google Scholar 

  16. S. Zhang, F. Ren, W. Wu, et al., J. Colloid Interface Sci., 427, 29-34 (2014), https://doi.org/10.1016/j.jcis.2013.12.012.

    Article  CAS  PubMed  Google Scholar 

  17. T. Kyrychok, O. Korotenko, V. Shvalagin, et al., Proc. SPIE 12126, Fifteenth Int. Conf. on Correlation Optics, (December 20, 2021), 121260X, 10.1117/12.2615552.

  18. E. Filippo, D. Manno, F. Buccolieri, et al., Superlat. Microstr., 47, No. 1, 66-71 (2010), https://doi.org/10.1016/j.spmi.2009.07.036.

    Article  CAS  Google Scholar 

  19. H. Ma, Y. Jiao, B. Yin, et al., Chem. Phys. Chem., 5, No. 5, 713 (2004), https://doi.org/10.1002/cphc.200301007.

    Article  CAS  PubMed  Google Scholar 

  20. Z. Li, W. Wang, Y. Yin, et al., Trends in Chem., 2, No. 7, 593-608 (2020), https://doi.org/10.1016/j.trechm.2020.03.008.

    Article  CAS  Google Scholar 

  21. L. Yan, Y. Yan, L. Xu, et al., Appl. Surf. Sci., 367, 563-568 (2016), https://doi.org/10.1016/j.apsusc.2016.01.238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shvalagin.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 1, pp. 30-34, January-February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvalagin, V.V., Grodzyuk, G.Y., Kuchmiy, S.Y. et al. Photocatalytic Obtaining and Optical Properties of Composites Based on Layered Niobates and Silver Nanoparticles. Theor Exp Chem 58, 34–39 (2022). https://doi.org/10.1007/s11237-022-09719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09719-4

Keywords

Navigation