Issue 12, 2022

Hydrovoltaic technology: from mechanism to applications

Abstract

Water is a colossal reservoir of clean energy as it adsorbs thirty-five percent of solar energy reaching the Earth's surface. More than half of the adsorbed energy turns into latent heat for water evaporation, driving the water cycle of the Earth.1 Yet, only very limited energy in the water cycle is harvested by current industrial technologies. The past decade has witnessed the emergence of hydrovoltaic technology, which generates electricity from nanomaterials by direct interaction with water and enables energy harvesting from the water cycle such as from rain, waves, flows, moisture and natural evaporation. Years of efforts have been committed to improve the conversion efficiency of hydrovoltaic devices through chemical synthesis of advanced nanomaterials and innovative design of device structures. Further development of this field, however, still requires in-depth understanding of hydrovoltaic mechanisms and boosting of the electrical outputs for wider applications. Here, we present a tutorial review of different mechanisms of generating electricity from droplets, flows, natural evaporation and ambient moisture by analyzing basic interactions at various water–material interfaces. Key aspects in raising the output power of hydrovoltaic devices are then discussed in terms of material synthesis, structural design, and device optimization. We also provide an outlook on the potential applications of this technology ranging from sensors, power suppliers to multifunctional systems as well as on the scientific and technological challenges in transforming its potential into practical utility. The prospects of this emerging field are considered for future endeavor.

Graphical abstract: Hydrovoltaic technology: from mechanism to applications

Supplementary files

Article information

Article type
Tutorial Review
Submitted
25 Jan 2022
First published
31 May 2022

Chem. Soc. Rev., 2022,51, 4902-4927

Hydrovoltaic technology: from mechanism to applications

X. Wang, F. Lin, X. Wang, S. Fang, J. Tan, W. Chu, R. Rong, J. Yin, Z. Zhang, Y. Liu and W. Guo, Chem. Soc. Rev., 2022, 51, 4902 DOI: 10.1039/D1CS00778E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements